Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 18: 607-619, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32775495

ABSTRACT

Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the alpha-galactosidase A (GLA) gene, which encodes the exogalactosyl hydrolase, alpha-galactosidase A (α-Gal A). Deficient α-Gal A activity results in the progressive, systemic accumulation of its substrates, globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), leading to renal, cardiac, and/or cerebrovascular disease and early demise. The current standard treatment for Fabry disease is enzyme replacement therapy, which necessitates lifelong biweekly infusions of recombinant enzyme. A more long-lasting treatment would benefit Fabry patients. Here, a gene therapy approach using an episomal adeno-associated viral 2/6 (AAV2/6) vector that encodes the human GLA cDNA driven by a liver-specific expression cassette was evaluated in a Fabry mouse model that lacks α-Gal A activity and progressively accumulates Gb3 and Lyso-Gb3 in plasma and tissues. A detailed 3-month pharmacology and toxicology study showed that administration of a clinical-scale-manufactured AAV2/6 vector resulted in markedly increased plasma and tissue α-Gal A activities, and essentially normalized Gb3 and Lyso-Gb3 at key sites of pathology. Further optimization of vector design identified the clinical lead vector, ST-920, which produced several-fold higher plasma and tissue α-Gal A activity levels with a good safety profile. Together, these studies provide the basis for the clinical development of ST-920.

2.
ACS Chem Biol ; 10(5): 1269-77, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25695325

ABSTRACT

The phosphotungstate anion (PTA) is widely used to facilitate the precipitation of disease-causing prion protein (PrP(Sc)) from infected tissue for applications in structural studies and diagnostic approaches. However, the mechanism of this precipitation is not understood. In order to elucidate the nature of the PTA interaction with PrP(Sc) under physiological conditions, solutions of PTA were characterized by NMR spectroscopy at varying pH. At neutral pH, the parent [PW12O40](3-) ion decomposes to give a lacunary [PW11O39](7-) (PW11) complex and a single orthotungstate anion [WO4](2-) (WO4). To measure the efficacy of each component of PTA, increasing concentrations of PW11, WO4, and mixtures thereof were used to precipitate PrP(Sc) from brain homogenates of scrapie prion-infected mice. The amount of PrP(Sc) isolated, quantified by ELISA and immunoblotting, revealed that both PW11 and WO4 contribute to PrP(Sc) precipitation. Incubation with sarkosyl, PTA, or individual components of PTA resulted in separation of higher-density PrP aggregates from the neuronal lipid monosialotetrahexosylganglioside (GM1), as observed by sucrose gradient centrifugation. These experiments revealed that yield and purity of PrP(Sc) were greater with polyoxometalates (POMs), which substantially supported the separation of lipids from PrP(Sc) in the samples. Interaction of POMs and sarkosyl with brain homogenates promoted the formation of fibrillar PrP(Sc) aggregates prior to centrifugation, likely through the separation of lipids like GM1 from PrP(Sc). We propose that this separation of lipids from PrP is a major factor governing the facile precipitation of PrP(Sc) by PTA from tissue and might be optimized further for the detection of prions.


Subject(s)
Phosphotungstic Acid/chemistry , Prions/chemistry , Scrapie/pathology , Animals , Blotting, Western , Brain/pathology , Enzyme-Linked Immunosorbent Assay , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...