Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
JHEP Rep ; 5(10): 100844, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37701337

ABSTRACT

Background & Aims: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease caused by biallelic variations in ABCB4. Data reporting on the impact of genotype and of response to ursodeoxycholic acid (UDCA) therapy on long-term outcomes are scarce. Methods: We retrospectively describe a cohort of 38 patients with PFIC3 with a median age at last follow-up of 19.5 years (range 3.8-53.8). Results: Twenty patients presented with symptoms before 1 year of age. Thirty-one patients received ursodeoxycholic acid (UDCA) therapy resulting in serum liver test improvement in 20. Twenty-seven patients had cirrhosis at a median age of 8.1 years of whom 18 received a liver transplant at a median age of 8.5 years. Patients carrying at least one missense variation were more likely to present with positive (normal or decreased) canalicular MDR3 expression in the native liver and had prolonged native liver survival (NLS; median 12.4 years [range 3.8-53.8]). In contrast, in patients with severe genotypes (no missense variation), there was no detectable canalicular MDR3 expression, symptom onset and cirrhosis occurred earlier, and all underwent liver transplantation (at a median age of 6.7 years [range 2.3-10.3]). The latter group was refractory to UDCA treatment, whereas 87% of patients with at least one missense variation displayed an improvement in liver biochemistry in response to UDCA. Biliary phospholipid levels over 6.9% of total biliary lipid levels predicted response to UDCA. Response to UDCA predicted NLS. Conclusions: Patients carrying at least one missense variation, with positive canalicular expression of MDR3 and a biliary phospholipid level over 6.9% of total biliary lipid levels were more likely to respond to UDCA and to exhibit prolonged NLS. Impact and implications: In this study, data show that genotype and response to ursodeoxycholic acid therapy predicted native liver survival in patients with PFIC3 (progressive familial intrahepatic cholestasis type 3). Patients carrying at least one missense variation, with positive (decreased or normal) immuno-staining for canalicular MDR3, and a biliary phospholipid level over 6.9% of total biliary lipids were more likely to respond to ursodeoxycholic acid therapy and to exhibit prolonged native liver survival.

2.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36142670

ABSTRACT

ABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin-Darby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter.


Subject(s)
ATP-Binding Cassette Transporters , Cystic Fibrosis Transmembrane Conductance Regulator , ATP-Binding Cassette Transporters/metabolism , Aminophenols , Animals , Cholestasis, Intrahepatic , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Dogs , Green Fluorescent Proteins/metabolism , Quinolones , Taurocholic Acid/pharmacology
3.
Int J Mol Sci ; 23(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35457067

ABSTRACT

The goal of this Special Issue on "ABC Transporters in Human Diseases", for which I was invited as a Guest Editor, was to provide an overview of the state-of-the-art research, understandings, and advances made in recent years on human diseases implicating ATP-binding cassette (ABC) transporters [...].


Subject(s)
ATP-Binding Cassette Transporters , ATP-Binding Cassette Transporters/genetics , Humans
4.
Cells ; 11(4)2022 02 10.
Article in English | MEDLINE | ID: mdl-35203270

ABSTRACT

ABCB4, is an adenosine triphosphate-binding cassette (ABC) transporter localized at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine secretion into bile. Gene variations of ABCB4 cause different types of liver diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3). The molecular mechanisms underlying the trafficking of ABCB4 to and from the canalicular membrane are still unknown. We identified the serine/threonine kinase Myotonic dystrophy kinase-related Cdc42-binding kinase isoform α (MRCKα) as a novel partner of ABCB4. The role of MRCKα was explored, either by expression of dominant negative mutant or by gene silencing using the specific RNAi and CRISPR-cas9 strategy in cell models. The expression of a dominant-negative mutant of MRCKα and MRCKα inhibition by chelerythrine both caused a significant increase in ABCB4 steady-state expression in primary human hepatocytes and HEK-293 cells. RNA interference and CRISPR-Cas9 knockout of MRCKα also caused a significant increase in the amount of ABCB4 protein expression. We demonstrated that the effect of MRCKα was mediated by its downstream effector, the myosin II regulatory light chain (MRLC), which was shown to also bind ABCB4. Our findings provide evidence that MRCKα and MRLC bind to ABCB4 and regulate its cell surface expression.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Cholestasis, Intrahepatic , Cholestasis , Myotonin-Protein Kinase , ATP Binding Cassette Transporter, Subfamily B/metabolism , HEK293 Cells , Humans , Myosin Light Chains , Myosin Type II , Myotonin-Protein Kinase/metabolism
5.
Orphanet J Rare Dis ; 16(1): 484, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34794484

ABSTRACT

BACKGROUND: ABCB11 variations are responsible for a spectrum of rare liver diseases, including progressive familial intrahepatic cholestasis type 2 (PFIC2) and intrahepatic cholestasis of pregnancy (ICP). Current medical treatment of these conditions mostly relies on ursodeoxycholic acid with limited efficacy. We report on the in vitro study of the p.A257V missense variant of ABCB11 identified in a PFIC2 patient and in her mother who experienced ICP. RESULTS: The Ala257 residue is located outside the ATP-binding site of ABCB11. We show that the p.A257V variant of ABCB11 is correctly expressed at the canalicular membrane of HepG2 cells but that its function significantly decreased when studied in MDCK cells. This functional defect can be fully rescued by Ivacaftor. CONCLUSION: Ivacaftor could be considered as a new pharmacological tool able to respond to an unmet medical need for patients with ICP and PFIC2 due to ABCB11 variations affecting ABCB11 function, even when the residue involved is not located in an ATP-binding site of ABCB11.


Subject(s)
ATP-Binding Cassette Transporters , Cholestasis, Intrahepatic , ATP Binding Cassette Transporter, Subfamily B, Member 11 , ATP-Binding Cassette Transporters/genetics , Aminophenols/therapeutic use , Cholestasis, Intrahepatic/drug therapy , Cholestasis, Intrahepatic/genetics , Female , Humans , Mutation , Pregnancy Complications , Quinolones
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209301

ABSTRACT

ABCB4 (ATP-binding cassette subfamily B member 4) is an ABC transporter expressed at the canalicular membrane of hepatocytes where it ensures phosphatidylcholine secretion into bile. Genetic variations of ABCB4 are associated with several rare cholestatic diseases. The available treatments are not efficient for a significant proportion of patients with ABCB4-related diseases and liver transplantation is often required. The development of novel therapies requires a deep understanding of the molecular mechanisms regulating ABCB4 expression, intracellular traffic, and function. Using an immunoprecipitation approach combined with mass spectrometry analyses, we have identified the small GTPase RAB10 as a novel molecular partner of ABCB4. Our results indicate that the overexpression of wild type RAB10 or its dominant-active mutant significantly increases the amount of ABCB4 at the plasma membrane expression and its phosphatidylcholine floppase function. Contrariwise, RAB10 silencing induces the intracellular retention of ABCB4 and then indirectly diminishes its secretory function. Taken together, our findings suggest that RAB10 regulates the plasma membrane targeting of ABCB4 and consequently its capacity to mediate phosphatidylcholine secretion.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Cell Membrane/metabolism , Hepatocytes/metabolism , Phosphatidylcholines/metabolism , rab GTP-Binding Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Biological Transport, Active , Cell Membrane/genetics , HEK293 Cells , HeLa Cells , Humans , Phosphatidylcholines/genetics , rab GTP-Binding Proteins/genetics
7.
Int J Mol Sci ; 22(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672718

ABSTRACT

The ATP-binding cassette (ABC) transporters expressed at the canalicular membrane of hepatocytes mediate the secretion of several compounds into the bile canaliculi and therefore play a key role in bile secretion. Among these transporters, ABCB11 secretes bile acids, ABCB4 translocates phosphatidylcholine and ABCG5/G8 is responsible for cholesterol secretion, while ABCB1 and ABCC2 transport a variety of drugs and other compounds. The dysfunction of these transporters leads to severe, rare, evolutionary biliary diseases. The development of new therapies for patients with these diseases requires a deep understanding of the biology of these transporters. In this review, we report the current knowledge regarding the regulation of canalicular ABC transporters' folding, trafficking, membrane stability and function, and we highlight the role of molecular partners in these regulating mechanisms.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Bile Canaliculi/metabolism , ATP-Binding Cassette Transporters/metabolism , Animals , Endocytosis , Glycosylation , Hepatocytes/metabolism , Humans , Multidrug Resistance-Associated Protein 2 , Ubiquitination
8.
Liver Int ; 41(6): 1344-1357, 2021 06.
Article in English | MEDLINE | ID: mdl-33650203

ABSTRACT

BACKGROUND & AIM: ABCB4 is expressed at the canalicular membrane of hepatocytes. This ATP-binding cassette (ABC) transporter is responsible for the secretion of phosphatidylcholine into bile canaliculi. Missense genetic variations of ABCB4 are correlated with several rare cholestatic liver diseases, the most severe being progressive familial intrahepatic cholestasis type 3 (PFIC3). In a repurposing strategy to correct intracellularly retained ABCB4 variants, we tested 16 compounds previously validated as cystic fibrosis transmembrane conductance regulator (CFTR) correctors. METHODS: The maturation, intracellular localization and activity of intracellularly retained ABCB4 variants were analyzed in cell models after treatment with CFTR correctors. In addition, in silico molecular docking calculations were performed to test the potential interaction of CFTR correctors with ABCB4. RESULTS: We observed that the correctors C10, C13, and C17, as well as the combinations of C3 + C18 and C4 + C18, allowed the rescue of maturation and canalicular localization of four distinct traffic-defective ABCB4 variants. However, such treatments did not permit a rescue of the phosphatidylcholine secretion activity of these defective variants and were also inhibitory of the activity of wild type ABCB4. In silico molecular docking analyses suggest that these CFTR correctors might directly interact with transmembrane domains and/or ATP-binding sites of the transporter. CONCLUSION: Our results illustrate the uncoupling between the traffic and the activity of ABCB4 because the same molecules can rescue the traffic of defective variants while they inhibit the secretion activity of the transporter. We expect that this study will help to design new pharmacological tools with potential clinical interest.


Subject(s)
Cholestasis, Intrahepatic , Cholestasis , ATP Binding Cassette Transporter, Subfamily B , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Molecular Docking Simulation , Phosphatidylcholines
9.
Liver Int ; 40(8): 1917-1925, 2020 08.
Article in English | MEDLINE | ID: mdl-32433800

ABSTRACT

BACKGROUND & AIM: The canalicular bile salt export pump (BSEP/ABCB11) of hepatocytes is the main adenosine triphosphate (ATP)-binding cassette (ABC) transporter responsible for bile acid secretion. Mutations in ABCB11 cause several cholestatic diseases, including progressive familial intrahepatic cholestasis type 2 (PFIC2) often lethal in absence of liver transplantation. We investigated in vitro the effect and potential rescue of a BSEP mutation by ivacaftor, a clinically approved cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7) potentiator. METHODS: The p.T463I mutation, identified in a PFIC2 patient and located in a highly conserved ABC transporter motif, was studied by 3D structure modelling. The mutation was reproduced in a plasmid encoding a rat Bsep-green fluorescent protein. After transfection, mutant expression was studied in Can 10 cells. Taurocholate transport activity and ivacaftor effect were studied in Madin-Darby canine kidney (MDCK) clones co-expressing the rat sodium-taurocholate co-transporting polypeptide (Ntcp/Slc10A1). RESULTS: As the wild-type protein, BsepT463I was normally targeted to the canalicular membrane of Can 10 cells. As predicted by 3D structure modelling, taurocholate transport activity was dramatically low in MDCK clones expressing BsepT463I . Ivacaftor treatment increased by 1.7-fold taurocholate transport activity of BsepT463I (P < .0001), reaching 95% of Bsepwt activity. These data suggest that the p.T463I mutation impairs ATP-binding, resulting in Bsep dysfunction that can be rescued by ivacaftor. CONCLUSION: These results provide experimental evidence of ivacaftor therapeutic potential for selected patients with PFIC2 caused by ABCB11 missense mutations affecting BSEP function. This could represent a significant step forward for the care of patients with BSEP deficiency.


Subject(s)
Cholestasis, Intrahepatic , Quinolones , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Aminophenols , Animals , Bile Acids and Salts , Cholestasis, Intrahepatic/drug therapy , Cholestasis, Intrahepatic/genetics , Dogs , Humans , Rats
10.
Sci Rep ; 9(1): 6653, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31040306

ABSTRACT

Adenosine triphosphate binding cassette transporter, subfamily B member 4 (ABCB4) is the transporter of phosphatidylcholine at the canalicular membrane of hepatocytes. ABCB4 deficiency, due to genetic variations, is responsible for progressive familial intrahepatic cholestasis type 3 (PFIC3) and other rare biliary diseases. Roscovitine is a molecule in clinical trial that was shown to correct the F508del variant of cystic fibrosis transmembrane conductance regulator (CFTR), another ABC transporter. In the present study, we hypothesized that roscovitine could act as a corrector of ABCB4 traffic-defective variants. Using HEK and HepG2 cells, we showed that roscovitine corrected the traffic and localisation at the plasma membrane of ABCB4-I541F, a prototypical intracellularly retained variant. However, roscovitine caused cytotoxicity, which urged us to synthesize non-toxic structural analogues. Roscovitine analogues were able to correct the intracellular traffic of ABCB4-I541F in HepG2 cells. Importantly, the phospholipid secretion activity of this variant was substantially rescued by three analogues (MRT2-235, MRT2-237 and MRT2-243) in HEK cells. We showed that these analogues also triggered the rescue of intracellular traffic and function of two other intracellularly retained ABCB4 variants, i.e. I490T and L556R. Our results indicate that structural analogues of roscovitine can rescue genetic variations altering the intracellular traffic of ABCB4 and should be considered as therapeutic means for severe biliary diseases caused by this class of variations.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Agents/pharmacology , Endoplasmic Reticulum/metabolism , Protein Kinase Inhibitors/pharmacology , Roscovitine/pharmacology , ATP Binding Cassette Transporter, Subfamily B/genetics , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fluorescent Antibody Technique , Humans , Molecular Structure , Mutant Proteins , Protein Kinase Inhibitors/chemistry , Protein Transport/drug effects , Roscovitine/analogs & derivatives , Roscovitine/chemistry
11.
J Lipid Res ; 59(9): 1610-1619, 2018 09.
Article in English | MEDLINE | ID: mdl-29895698

ABSTRACT

The ATP-binding cassette transporter ABCB4/MDR3 is critical for biliary phosphatidylcholine (PC) excretion at the canalicular membrane of hepatocytes. Defective ABCB4 gene expression and protein function result in various cholestatic liver and bile duct injuries. Thyroid hormone receptor (THR) is a major regulator of hepatic lipid metabolism; we explored its potential role in ABCB4 regulation. Thyroid hormone T3 stimulation to human hepatocyte models showed direct transcriptional activation of ABCB4 in a dose- and time-dependent manner. To determine whether THRß1 (the main THR isoform of the liver) is involved in regulation, we tested THRß1-specific agonists (e.g., GC-1, KB-141); these agonists resulted in greater stimulation than the native hormone. KB-141 activated hepatic ABCB44 expression in mice, which enhanced biliary PC secretion in vivo. We also identified THR response elements 6 kb upstream of the ABCB4 locus that were conserved in humans and mice. Thus, T3-via THRß1 as a novel transcriptional activator regulates ABCB4 to increase ABCB4 protein levels at the canalicular membrane and promote PC secretion into bile. These findings may have important implications for understanding thyroid hormone function as a potential modifier of bile duct homeostasis and provide pharmacologic opportunities to improve liver function in hepatobiliary diseases caused by low ABCB4 expression.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Biliary Tract/metabolism , Phosphatidylcholines/metabolism , Thyroid Hormone Receptors beta/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Gene Expression Regulation , Hep G2 Cells , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Time Factors , Transcription, Genetic , ATP-Binding Cassette Sub-Family B Member 4
12.
Biochem Pharmacol ; 136: 1-11, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28245962

ABSTRACT

Human ABC (ATP Binding Cassette) transporters form a superfamily of forty-eight transmembrane proteins, which transport their substrates across biological membranes against important concentration gradients, in an energy-dependent manner. Gene variations in approximately half of these transporters have been identified in subjects with rare and often severe genetic diseases, highlighting the importance of their biological function. For missense variations leading to defects in ABC transporters, the current challenge is to identify new molecules with therapeutic potential able to rescue the induced molecular deficiency. In this review, we first address the progress provided by emerging pharmacotherapies in cystic fibrosis, the most frequent monogenic disease caused by variations of an ABC transporter, i.e. ABCC7/CFTR. Then, we enlarge the topic to the other ABC transporters, more notably to canalicular ABC transporters, the variations of which cause rare hepatobiliary diseases, and we discuss the first promising attempts aiming to correct molecular defects of these proteins.


Subject(s)
ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Drug Delivery Systems/trends , Genetic Therapy/trends , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Cell Membrane/genetics , Cell Membrane/metabolism , Cystic Fibrosis/drug therapy , Drug Delivery Systems/methods , Genetic Therapy/methods , Genetic Variation/genetics , Humans
13.
PLoS One ; 11(1): e0146962, 2016.
Article in English | MEDLINE | ID: mdl-26789121

ABSTRACT

ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/biosynthesis , Cell Membrane/metabolism , Gene Expression Regulation/physiology , Hepatocytes/metabolism , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Amino Acid Motifs , Cell Membrane/genetics , HEK293 Cells , Hep G2 Cells , Hepatocytes/cytology , Humans , PDZ Domains , Phosphoproteins/genetics , Sodium-Hydrogen Exchangers/genetics
14.
Hepatology ; 63(5): 1620-31, 2016 May.
Article in English | MEDLINE | ID: mdl-26474921

ABSTRACT

UNLABELLED: Progressive familial intrahepatic cholestasis type 3 is caused by biallelic variations of ABCB4, most often (≥70%) missense. In this study, we examined the effects of 12 missense variations identified in progressive familial intrahepatic cholestasis type 3 patients. We classified these variations on the basis of the defects thus identified and explored potential rescue of trafficking-defective mutants by pharmacological means. Variations were reproduced in the ABCB4 complementary DNA and the mutants, thus obtained, expressed in HepG2 and HEK293 cells. Three mutants were either fully (I541F and L556R) or largely (Q855L) retained in the endoplasmic reticulum, in an immature form. Rescue of the defect, i.e., increase in the mature form at the bile canaliculi, was obtained by cell treatments with cyclosporin A or C and, to a lesser extent, B, D, or H. Five mutations with little or no effect on ABCB4 expression at the bile canaliculi caused a decrease (F357L, T775M, and G954S) or almost absence (S346I and P726L) of phosphatidylcholine secretion. Two mutants (T424A and N510S) were normally processed and expressed at the bile canaliculi, but their stability was reduced. We found no defect of the T175A mutant or of R652G, previously described as a polymorphism. In patients, the most severe phenotypes appreciated by the duration of transplant-free survival were caused by ABCB4 variants that were markedly retained in the endoplasmic reticulum and expressed in a homozygous status. CONCLUSION: ABCB4 variations can be classified as follows: nonsense variations (I) and, on the basis of current findings, missense variations that primarily affect the maturation (II), activity (III), or stability (IV) of the protein or have no detectable effect (V); this classification provides a strong basis for the development of genotype-based therapies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/deficiency , Cholestasis, Intrahepatic/genetics , Mutation , ATP Binding Cassette Transporter, Subfamily B/genetics , Cyclosporine/pharmacology , HEK293 Cells , Hep G2 Cells , Humans , Phosphatidylcholines/metabolism
15.
Clin Res Hepatol Gastroenterol ; 38(5): 557-63, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24953525

ABSTRACT

Adenosine triphosphate (ATP)-binding cassette, sub-family B, member 4 (ABCB4), also called multidrug resistance 3 (MDR3), is a member of the ATP-binding cassette transporter superfamily, which is localized at the canalicular membrane of hepatocytes, and mediates the translocation of phosphatidylcholine into bile. Phosphatidylcholine secretion is crucial to ensure solubilization of cholesterol into mixed micelles and to prevent bile acid toxicity towards hepatobiliary epithelia. Genetic defects of ABCB4 may cause progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare autosomic recessive disease occurring early in childhood that may be lethal in the absence of liver transplantation, and other cholestatic or cholelithiasic diseases in heterozygous adults. Development of therapies for these conditions requires understanding of the biology of this transporter and how gene variations may cause disease. This review focuses on our current knowledge on the regulation of ABCB4 expression, trafficking and function, and presents recent advances in fundamental research with promising therapeutic perspectives.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/physiology , ATP Binding Cassette Transporter, Subfamily B/deficiency , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Deficiency Diseases/drug therapy , Humans , Mutation
16.
Hepatology ; 60(2): 610-21, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24723470

ABSTRACT

UNLABELLED: The ABCB4 transporter mediates phosphatidylcholine (PC) secretion at the canalicular membrane of hepatocytes and its genetic defects cause biliary diseases. Whereas ABCB4 shares high sequence identity with the multidrug transporter, ABCB1, its N-terminal domain is poorly conserved, leading us to hypothesize a functional specificity of this domain. A database of ABCB4 genotyping in a large series of patients was screened for variations altering residues of the N-terminal domain. Identified variants were then expressed in cell models to investigate their biological consequences. Two missense variations, T34M and R47G, were identified in patients with low-phospholipid-associated cholelithiasis or intrahepatic cholestasis of pregnancy. The T34M and R47G mutated proteins showed no or minor defect, respectively, in maturation and targeting to the apical membrane, in polarized Madin-Darby Canine Kidney and HepG2 cells, whereas their stability was similar to that of wild-type (WT) ABCB4. By contrast, the PC secretion activity of both mutants was markedly decreased. In silico analysis indicated that the identified variants were likely to affect ABCB4 phosphorylation. Mass spectrometry analyses confirmed that the N-terminal domain of WT ABCB4 could undergo phosphorylation in vitro and revealed that the T34M and R47G mutations impaired such phosphorylation. ABCB4-mediated PC secretion was also increased by pharmacological activation of protein kinases A or C and decreased by inhibition of these kinases. Furthermore, secretion activity of the T34M and R47G mutants was less responsive than that of WT ABCB4 to protein kinase modulators. CONCLUSION: We identified disease-associated variants of ABCB4 involved in the phosphorylation of its N-terminal domain and leading to decreased PC secretion. Our results also indicate that ABCB4 activity is regulated by phosphorylation, in particular, of N-terminal residues.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Pregnancy Complications/genetics , Pregnancy Complications/metabolism , ATP Binding Cassette Transporter, Subfamily B/chemistry , Adolescent , Adult , Animals , Cell Polarity/physiology , Dogs , Female , Genotype , HEK293 Cells , Hep G2 Cells , Humans , Madin Darby Canine Kidney Cells , Male , Middle Aged , Mutation, Missense , Phosphatidylcholines/metabolism , Phosphorylation/physiology , Pregnancy , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary
17.
Hepatology ; 58(4): 1401-12, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23696511

ABSTRACT

UNLABELLED: Alterations in apical junctional complexes (AJCs) have been reported in genetic or acquired biliary diseases. The vitamin D nuclear receptor (VDR), predominantly expressed in biliary epithelial cells in the liver, has been shown to regulate AJCs. The aim of our study was thus to investigate the role of VDR in the maintenance of bile duct integrity in mice challenged with biliary-type liver injury. Vdr(-/-) mice subjected to bile duct ligation (BDL) displayed increased liver damage compared to wildtype BDL mice. Adaptation to cholestasis, ascertained by expression of genes involved in bile acid metabolism and tissue repair, was limited in Vdr(-/-) BDL mice. Furthermore, evaluation of Vdr(-/-) BDL mouse liver tissue sections indicated altered E-cadherin staining associated with increased bile duct rupture. Total liver protein analysis revealed that a truncated form of E-cadherin was present in higher amounts in Vdr(-/-) mice subjected to BDL compared to wildtype BDL mice. Truncated E-cadherin was also associated with loss of cell adhesion in biliary epithelial cells silenced for VDR. In these cells, E-cadherin cleavage occurred together with calpain 1 activation and was prevented by the silencing of calpain 1. Furthermore, VDR deficiency led to the activation of the epidermal growth factor receptor (EGFR) pathway, while EGFR activation by EGF induced both calpain 1 activation and E-cadherin cleavage in these cells. Finally, truncation of E-cadherin was blunted when EGFR signaling was inhibited in VDR-silenced cells. CONCLUSION: Biliary-type liver injury is exacerbated in Vdr(-/-) mice by limited adaptive response and increased bile duct rupture. These results indicate that loss of VDR restricts the adaptation to cholestasis and diminishes bile duct integrity in the setting of biliary-type liver injury.


Subject(s)
Biliary Tract/pathology , Cholestasis/physiopathology , Epithelial Cells/pathology , Intercellular Junctions/pathology , Liver/physiopathology , Receptors, Calcitriol/deficiency , Amino Acid Sequence , Animals , Bile Ducts/physiopathology , Cadherins/analysis , Cadherins/physiology , Calpain/physiology , Cholestasis/pathology , Disease Models, Animal , ErbB Receptors/physiology , Ligation , Liver/pathology , Mice , Mice, Knockout , Molecular Sequence Data , Receptors, Calcitriol/physiology
18.
Traffic ; 13(1): 131-42, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21951651

ABSTRACT

The biogenesis of multivesicular endosomes and the sorting of activated signaling receptors into multivesicular endosomes depend on soluble protein complexes (ESCRT complexes), which transiently interact with the receptor cargo and the endosomal membrane. Previously, it was shown that the transmembrane protein secretory carrier membrane protein (SCAMP) 3, which is present on endosomes, interacts with ESCRT components. Here, we report that SCAMP3 plays a role in the biogenesis of multivesicular endosomes. We find that SCAMP3 plays a role in EGF receptor sorting into multivesicular endosomes and in the formation of intralumenal vesicles within these endosomes in vitro and thus also controls EGF receptor targeting to lysosomes. We also find that SCAMP3 regulates the EGF-dependent biogenesis of multivesicular endosomes. We conclude that the transmembrane protein SCAMP3 has a positive role in sorting into and budding of intralumenal vesicles and thereby controls the process of multivesicular endosome biogenesis.


Subject(s)
Carrier Proteins/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Multivesicular Bodies/metabolism , Animals , Carrier Proteins/genetics , Cell Line , Cricetinae , Electrophoresis, Polyacrylamide Gel , ErbB Receptors/biosynthesis , Gene Knockdown Techniques , HeLa Cells , Humans , Intracellular Membranes/ultrastructure , Membrane Proteins/genetics , Microscopy, Electron , Microscopy, Fluorescence , Multivesicular Bodies/ultrastructure , Protein Transport , RNA, Small Interfering , Vesicular Transport Proteins/biosynthesis
19.
Exp Cell Res ; 315(9): 1567-73, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19133258

ABSTRACT

Along the degradation pathway, endosomes exhibit a characteristic multivesicular organization, resulting from the budding of vesicles into the endosomal lumen. After endocytosis and transport to early endosomes, activated signaling receptors are incorporated into these intralumenal vesicles through the action of the ESCRT machinery, a process that contributes to terminate signaling. Then, the vesicles and their protein cargo are further transported towards lysosomes for degradation. Evidence also shows that intralumenal vesicles can undergo "back-fusion" with the late endosome limiting membrane, a route exploited by some pathogens and presumably followed by proteins and lipids that need to be recycled from within the endosomal lumen. This process depends on the late endosomal lipid lysobisphosphatidic acid and its putative effector Alix/AIP1, and is presumably coupled to the invagination of the endosomal limiting membrane at the molecular level via ESCRT proteins. In this review, we discuss the intra-endosomal transport routes in mammalian cells, and in particular the different mechanisms involved in membrane invagination, vesicle formation and fusion in a space inaccessible to proteins known to control intracellular membrane traffic.


Subject(s)
Endocytosis/physiology , Endosomes/physiology , Intracellular Membranes/physiology , Lysosomes/physiology , Animals , Humans , Protein Transport/physiology , Signal Transduction/physiology
20.
Mol Biol Cell ; 19(11): 4942-55, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18768755

ABSTRACT

Endosomes along the degradation pathway leading to lysosomes accumulate membranes in their lumen and thus exhibit a characteristic multivesicular appearance. These lumenal membranes typically incorporate down-regulated EGF receptor destined for degradation, but the mechanisms that control their formation remain poorly characterized. Here, we describe a novel quantitative biochemical assay that reconstitutes the formation of lumenal vesicles within late endosomes in vitro. Vesicle budding into the endosome lumen was time-, temperature-, pH-, and energy-dependent and required cytosolic factors and endosome membrane components. Our light and electron microscopy analysis showed that the compartment supporting the budding process was accessible to endocytosed bulk tracers and EGF receptor. We also found that the EGF receptor became protected against trypsin in our assay, indicating that it was sorted into the intraendosomal vesicles that were formed in vitro. Our data show that the formation of intralumenal vesicles is ESCRT-dependent, because the process was inhibited by the K173Q dominant negative mutant of hVps4. Moreover, we find that the ESCRT-I subunit Tsg101 and its partner Alix control intralumenal vesicle formation, by acting as positive and negative regulators, respectively. We conclude that budding of the limiting membrane toward the late endosome lumen, which leads to the formation of intraendosomal vesicles, is controlled by the positive and negative functions of Tsg101 and Alix, respectively.


Subject(s)
Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Endosomes/metabolism , Transcription Factors/metabolism , Animals , Arylsulfonates/metabolism , Cell Line , Cricetinae , Endosomal Sorting Complexes Required for Transport , Endosomes/ultrastructure , ErbB Receptors/metabolism , Humans , Hydrogen-Ion Concentration , Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Protein Subunits/metabolism , Protein Transport , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...