Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36015079

ABSTRACT

Altered regulation of neurotransmitters may lead to many pathophysiological changes in brain disorders including autism spectrum disorder (ASD). Given the fact that there are no FDA-approved effective treatments for the social deficits in ASD, the present study determined the effects of chronic systemic treatment of the novel multiple-active H3R/D2R/D3R receptor antagonist ST-2223 on ASD-related social deficits in a male Black and Tan Brachyury (BTBR) mice. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly and dose-dependently mitigated social deficits and disturbed anxiety levels of BTBR mice (p < 0.05) in comparison to the effects of aripiprazole (1 mg/kg, i.p.). Moreover, levels of monoaminergic neurotransmitters quantified by LC-MS/MS in four brain regions including the prefrontal cortex, cerebellum, striatum, and hippocampus unveiled significant elevation of histamine (HA) in the cerebellum and striatum; dopamine (DA) in the prefrontal cortex and striatum; as well as acetylcholine (ACh) in the prefrontal cortex, striatum, and hippocampus following ST-2223 (5 mg/kg) administration (all p < 0.05). These in vivo findings demonstrate the mitigating effects of a multiple-active H3R/D2R/D3R antagonist on social deficits of assessed BTBR mice, signifying its pharmacological potential to rescue core ASD-related behaviors and altered monoaminergic neurotransmitters. Further studies on neurochemical alterations in ASD are crucial to elucidate the early neurodevelopmental variations behind the core symptoms and heterogeneity of ASD, leading to new approaches for the future therapeutic management of ASD.

2.
Curr Top Behav Neurosci ; 59: 29-76, 2022.
Article in English | MEDLINE | ID: mdl-34595743

ABSTRACT

Ligands with different properties and different selectivity are highly needed for in vitro and in vivo studies on the (patho)physiological influence of the chemical mediator histamine and its receptor subtypes. A selection of well-described ligands for the different receptor subtypes and different studies is shown with a particular focus on affinity and selectivity. In addition, compounds with radioactive or fluorescence elements will be presented with their beneficial use for other species or different investigations.


Subject(s)
Histamine Antagonists , Histamine , Histamine/pharmacology , Histamine Antagonists/chemistry , Ligands , Receptors, Histamine
3.
Bioorg Med Chem ; 50: 116462, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34695709

ABSTRACT

Alzheimers disease (AD) is the most prominent neurodegenerative disorder with high medical need. Protein-protein-interactions (PPI) interactions have a critical role in AD where ß-amyloid structures (Aß) build toxic oligomers. Design of disease modifying multi target directed ligand (MTDL) has been performed, which disable PPI on the one hand and on the other hand, act as procognitive antagonists at the histamine H3 receptor (H3R). The synthetized compounds are structurally based on peptidomimetic amino acid-like structures mainly as keto, diketo-, or acyl variations of a piperazine moiety connected to an H3R pharmacophore. Most of them showed low nanomolar affinities at H3R and some with promising affinity to Aß-monomers. The structure-activity relationships (SAR) described offer new possibilities for MTDL with an optimized profile combining symptomatic and potential causal therapeutic approaches in AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Histamine H3 Antagonists/pharmacology , Peptidomimetics/pharmacology , Piperazine/pharmacology , Receptors, Histamine H3/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Dose-Response Relationship, Drug , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/chemistry , Humans , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Piperazine/chemical synthesis , Piperazine/chemistry , Structure-Activity Relationship
4.
Int J Mol Sci ; 22(4)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669336

ABSTRACT

Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by social and communicative impairments, as well as repetitive and restricted behaviors (RRBs). With the limited effectiveness of current pharmacotherapies in treating repetitive behaviors, the present study determined the effects of acute systemic treatment of the novel multi-targeting ligand ST-2223, with incorporated histamine H3 receptor (H3R) and dopamine D2/D3 receptor affinity properties, on ASD-related RRBs in a male Black and Tan BRachyury (BTBR) mouse model of ASD. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly mitigated the increase in marble burying and self-grooming, and improved reduced spontaneous alternation in BTBR mice (all p < 0.05). Similarly, reference drugs memantine (MEM, 5 mg/kg, i.p.) and aripiprazole (ARP, 1 mg/kg, i.p.), reversed abnormally high levels of several RRBs in BTBR (p < 0.05). Moreover, ST-2223 palliated the disturbed anxiety levels observed in an open field test (all p < 0.05), but did not restore the hyperactivity parameters, whereas MEM failed to restore mouse anxiety and hyperactivity. In addition, ST-2223 (5 mg/kg, i.p.) mitigated oxidative stress status by decreasing the elevated levels of malondialdehyde (MDA), and increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in different brain parts of treated BTBR mice (all p < 0.05). These preliminary in vivo findings demonstrate the ameliorative effects of ST-2223 on RRBs in a mouse model of ASD, suggesting its pharmacological prospective to rescue core ASD-related behaviors. Further confirmatory investigations on its effects on various brain neurotransmitters, e.g., dopamine and histamine, in different brain regions are still warranted to corroborate and expand these initial data.


Subject(s)
Autism Spectrum Disorder/drug therapy , Brain/metabolism , Dopamine D2 Receptor Antagonists/administration & dosage , Grooming/drug effects , Histamine H3 Antagonists/administration & dosage , Oxidative Stress/drug effects , Receptors, Dopamine D3/antagonists & inhibitors , Animals , Anxiety/drug therapy , Brain/drug effects , Disease Models, Animal , Dopamine D2 Receptor Antagonists/metabolism , HEK293 Cells , Histamine H3 Antagonists/metabolism , Humans , Ligands , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Receptors, Histamine H3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...