Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888103

ABSTRACT

Marine fungi associated with macroalgae are an ecologically important group that have a strong potential for industrial applications. In this study, twenty-two marine fungi isolated from the brown seaweed Fucus sp. were examined for their abilities to produce algal and plant biomass degrading enzymes. Growth of these isolates on brown and green algal biomass revealed a good growth, but no preference for any specific algae. Based on the analysis of enzymatic activities, macroalgae derived fungi were able to produce algae specific and (hemi-)cellulose degrading enzymes both on algal and plant biomass. However, the production of algae specific activities was lower than the production of cellulases and xylanases. These data revealed the presence of different enzymatic approaches for the degradation of algal biomass by macroalgae derived fungi. In addition, the results of the present study indicate our poor understanding of the enzymes involved in algal biomass degradation and the mechanisms of algal carbon source utilization by marine derived fungi.

2.
Mol Ecol ; 27(23): 4808-4819, 2018 12.
Article in English | MEDLINE | ID: mdl-30368956

ABSTRACT

Sodiomyces alkalinus is one of the very few alkalophilic fungi, adapted to grow optimally at high pH. It is widely distributed at the plant-deprived edges of extremely alkaline lakes and locally abundant. We sequenced the genome of S. alkalinus and reconstructed evolution of catabolic enzymes, using a phylogenomic comparison. We found that the genome of S. alkalinus is larger, but its predicted proteome is smaller and heavily depleted of both plant-degrading enzymes and proteinases, when compared to its closest plant-pathogenic relatives. Interestingly, despite overall losses, S. alkalinus has retained many proteinases families and acquired bacterial cell wall-degrading enzymes, some of them via horizontal gene transfer from bacteria. This fungus has very potent proteolytic activity at high pH values, but slowly induced low activity of cellulases and hemicellulases. Our experimental and in silico data suggest that plant biomass, a common food source for most fungi, is not a preferred substrate for S. alkalinus in its natural environment. We conclude that the fungus has abandoned the ancestral plant-based diet and has become specialized in a more protein-rich food, abundantly available in soda lakes in the form of prokaryotes and small crustaceans.


Subject(s)
Alkalies , Ascomycota/classification , Genome, Fungal , Lakes/microbiology , Ascomycota/enzymology , Gene Transfer, Horizontal , Hydrogen-Ion Concentration , Phylogeny , Plants
3.
Appl Biochem Biotechnol ; 172(3): 1332-46, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24170331

ABSTRACT

Enzymatic hydrolysis is an important but expensive step in the production of ethanol from biomass. Thus, the production of efficient enzymatic cocktails is of great interest for this biotechnological application. The production of endoglucanase and xylanase activites from F. verticillioides were optimized in a factorial design (2(5)) followed by a CCDR design. Endoglucanase and xylanase activities increased from 2.8 to 8.0 U/mL and from 13.4 to 114 U/mL, respectively. The optimal pH and temperature were determined for endoglucanase (5.6, 80 °C), cellobiase (5.6, 60 °C), FPase (6.0, 55 °C) and xylanase (7.0, 50 °C). The optimized crude extract was applied in saccharification and fermentation of sugarcane bagasse from which 9.7 g/L of ethanol was produced at an ethanol/biomass yield of 0.19.


Subject(s)
Cellulase/chemistry , Endo-1,4-beta Xylanases/chemistry , Fusarium/enzymology , Biomass , Cellulose/chemistry , Ethanol/chemistry , Fermentation , Hydrolysis , Saccharum/chemistry
4.
J Biotechnol ; 168(1): 71-7, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23942376

ABSTRACT

Production of ethanol with two corn endophytic fungi, Fusarium verticillioides and Acremonium zeae, was studied. The yield of ethanol from glucose, xylose and a mixture of both sugars were 0.47, 0.46 and 0.50g/g ethanol/sugar for F. verticillioides and 0.37, 0.39 and 0.48g/g ethanol/sugar for A. zeae. Both fungi were able to co-ferment glucose and xylose. Ethanol production from 40g/L of pre-treated sugarcane bagasse was 4.6 and 3.9g/L for F. verticillioides and A. zeae, respectively, yielding 0.31g/g of ethanol per consumed sugar. Both fungi studied were capable of co-fermenting glucose and xylose at high yields. Moreover, they were able to produce ethanol directly from lignocellulosic biomass, demonstrating to be suitable microorganisms for consolidated bioprocessing.


Subject(s)
Acremonium/metabolism , Cellulose/metabolism , Ethanol/metabolism , Fusarium/metabolism , Glucose/metabolism , Saccharum/chemistry , Xylose/metabolism , Zea mays/microbiology , Industrial Microbiology
5.
Bioresour Technol ; 143: 413-22, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23819978

ABSTRACT

A novel multienzyme complex, E1C, and a free endoglucanase, E2 (GH5), from Fusarium verticillioides were purified. The E1C contained two endoglucanases (GH6 and GH10), one cellobiohydrolase (GH7) and one xylanase (GH10). Maximum activity was observed at 80 °C for both enzymes and they were thermostable at 50 and 60 °C. The activation energies for E1C and E2 were 21.3 and 27.5 kJ/mol, respectively. The KM for E1C was 10.25 g/L while for E2 was 6.58 g/L. Both E1C and E2 were activated by Mn(2+) and CoCl2 while they were inhibited by SDS, CuSO4, FeCl3, AgNO4, ZnSO4 and HgCl2. E1C and E2 presented endo-ß-1,3-1,4-glucanase activity. E1C presented crescent activity towards cellopentaose, cellotetraose and cellotriose. E2 hydrolyzed the substrates cellopentaose, cellotetraose and cellotriose with the same efficiency. E1C showed a higher stability and a better hydrolysis performance than E2, suggesting advantages resulting from the physical interaction between proteins.


Subject(s)
Cellulase/metabolism , Fusarium/enzymology , Glycoside Hydrolases/metabolism , Multienzyme Complexes/metabolism , Amino Acid Sequence , Cellulase/antagonists & inhibitors , Cellulase/chemistry , Cellulose/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/chemistry , Hydrogen-Ion Concentration , Kinetics , Mass Spectrometry , Molecular Sequence Data , Molecular Weight , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/chemistry , Substrate Specificity , Temperature
6.
J Agric Food Chem ; 58(14): 8386-91, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20597549

ABSTRACT

Exoinulinase (beta-d-fructan fructohydrolase, EC 3.2.1.80) secreted by Aspergillus terreus CCT4083 was obtained using sugar cane bagasse, an agroindustrial residue, as a carbon source. It was further purified from the supernatant culture in a rapid procedure. The enzyme presented 57 kDa on SDS-PAGE and 56 kDa on gel filtration chromatography. Inulin was hydrolyzed by the purified enzyme, yielding d-fructose as the main product. This enzyme showed maximum activity at pH 4.0 and 60 degrees C and maintained more than 90 and 75% of its original activity at 40 and 50 degrees C, respectively, after 3.5 h of preincubation. The K(M) values for inulin, sucrose, and raffinose were 11, 4.20, and 27.89 mM, respectively, and d-fructose was a competitive inhibitor (K(i) = 47.55 mM). The activation energies for sucrose, raffinose, and inulin were 10.4, 5.61, and 4.44 kcal/mol, respectively. The characteristics of A. terreus exoinulinase were compared to those of inulinases isolated from other organisms. The exoinulinase traits presented especially good thermostability and the ability to produce pure d-fructose, suggesting its application to the production of high-fructose syrup.


Subject(s)
Aspergillus/enzymology , Fungal Proteins/chemistry , Glycoside Hydrolases/chemistry , Industrial Waste/analysis , Saccharum/microbiology , Aspergillus/chemistry , Aspergillus/genetics , Culture Media/metabolism , Enzyme Stability , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Gene Expression , Glycoside Hydrolases/genetics , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Inulin/metabolism , Kinetics , Refuse Disposal , Saccharum/chemistry , Substrate Specificity
7.
J Agric Food Chem ; 54(26): 10184-90, 2006 Dec 27.
Article in English | MEDLINE | ID: mdl-17177558

ABSTRACT

Galactooligosaccharides (GO) are responsible for intestinal disturbances following ingestion of legume-derived products. Enzymatic reduction of GO level in these products is highly desirable to improve their acceptance. For this purpose, plant and microbial semipurified alpha-galactosidases were used for GO hydrolysis in soybean flour and soy molasses. alpha-Galactosidases from soybean germinating seeds, Aspergillus terreus, and Penicillium griseoroseum presented maximal activities at pH 4.0-5.0 and 45-65 degrees C. The KM,app values determined for raffinose by the soybean, A. terreus, and P. griseoroseum alpha-galactosidases were 3.44, 19.39, and 20.67 mM, respectively. The enzymes were completely inhibited by Ag+ and Hg2+, whereas only soybean enzyme was inhibited by galactose. A. terreus alpha-galactosidase was more thermostable than the enzymes from the other two sources. This enzyme maintained about 100% of its original activity after 3 h at 60 C. The microbial alpha-galactosidases were more efficient for reducing GO in soybean flour and soy molasses than soybean enzyme.


Subject(s)
Food Handling/methods , Glycine max/metabolism , Soy Foods , alpha-Galactosidase/metabolism , Aspergillus/enzymology , Galactose/metabolism , Oligosaccharides/metabolism , Penicillium/enzymology , Seeds/enzymology , Glycine max/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...