Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(6 Pt 2): 067602, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11736321

ABSTRACT

We examine statistics of two interacting optical solitons and describe timing jitter caused by spontaneous emission noise and enhanced by pulse interaction. Dynamics of phase difference is shown to be of crucial importance in determining the probability distribution function (PDF) of the distance between solitons. We find analytically the non-Gaussian tail of the PDF to be exponential. The propagation distance that corresponds to a given bit-error rate is described as a function of system parameters (filtering and noise level), initial distance, and initial phase difference between solitons. We find the interval of parameters where a larger propagation distance can be achieved for higher density of information.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(2 Pt 2): 025601, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11308535

ABSTRACT

We present a consistent method to calculate the probability distribution of soliton parameters in systems with additive noise. Even though the noise is weak, we are interested in probabilities of large fluctuations (generally non-Gaussian) which are beyond perturbation theory. Our method is a development of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve a fundamental problem of soliton statistics governed by a noisy nonlinear Schrödinger equation. We then apply our method to optical soliton transmission systems using signal control elements (filters and amplitude and phase modulators).

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(1 Pt 2): 016408, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11304366

ABSTRACT

We develop a WKB approach to the rapid distortion theory for magnetohydrodynamic turbulence with large magnetic Prandtl number. Within this theory, we study the growth of small-scale magnetic fluctuations in a large-scale velocity field being initially a pure strain. We show that the magnetic Lorentz force excites a secondary flow in the form of counterrotating vortices on the periphery of the magnetic spot. Those vortices slow down stretching of the magnetic spot and thus provide a negative feedback for a small-scale magnetic dynamo.

SELECTION OF CITATIONS
SEARCH DETAIL
...