Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(12): 10386-10400, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38858308

ABSTRACT

We synthesized two new gemini analogues, UG-480 and UG-481, that incorporate a modified longer side chain containing a cyclopropane group. The evaluation of the bioactivities of the two gemini analogues indicated that the 17,20 threo (20S) compound, UG-480, is the most active one and is as active as 1,25(OH)2D3. Docking and molecular dynamics (MD) data showed that the compounds bind efficiently to vitamin D receptor (VDR) with UG-480 to form an energetically more favorable interaction with His397. Structural analysis indicated that whereas the UG-480 compound efficiently stabilizes the active VDR conformation, it induces conformational changes in the H6-H7 VDR region that are greater than those induced by the parental Gemini and that this is due to the occupancy of the secondary channel by its modified side chain.


Subject(s)
Cyclopropanes , Drug Design , Receptors, Calcitriol , Cyclopropanes/chemistry , Cyclopropanes/chemical synthesis , Cyclopropanes/pharmacology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/agonists , Humans , Molecular Dynamics Simulation , Structure-Activity Relationship , Molecular Docking Simulation
2.
Bioorg Chem ; 136: 106528, 2023 07.
Article in English | MEDLINE | ID: mdl-37054528

ABSTRACT

Intense synthetic efforts have been directed towards the development of noncalcemic analogs of 1,25-dihydroxyvitamin D3. We describe here the structural analysis and biological evaluation of two derivatives of 1,25-dihydroxyvitamin D3 with modifications limited to the replacement of the 25-hydroxyl group by a 25-amino or 25-nitro groups. Both compounds are agonists of the vitamin D receptor. They mediate biological effects similar to 1,25-dihydroxyvitamin D3, the 25-amino derivative being the most potent one while being less calcemic than 1,25-dihydroxyvitamin D3. The in vivo properties of the compounds make them of potential therapeutic value.


Subject(s)
Receptors, Calcitriol , Vitamin D , Vitamin D/pharmacology , Calcitriol/chemistry , Calcitriol/pharmacology
3.
Org Biomol Chem ; 20(5): 1073-1079, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35029264

ABSTRACT

A combined computational/experimental approach has revealed key mechanistic aspects in a recently reported dyotropic expansion of hydrindanes into decalins. While computer simulations had already anticipated the need for acid catalysis for making this reaction feasible under the mild conditions used in the laboratory, this work places the dyotropic step not into the reaction flask but at a later step, during the work up instead. With this information in hand the reaction has been optimized by exploring the performance of different activating agents and shown to be versatile, particularly in steroid related chemistry due to the two scaffolds that this reaction connects. Finally, the scope of the reaction has been significantly broadened by showing that this protocol can also operate in the absence of the fused six-member ring.

4.
J Steroid Biochem Mol Biol ; 208: 105735, 2021 04.
Article in English | MEDLINE | ID: mdl-32784045

ABSTRACT

Despite advances in breast cancer (BC) treatment, its mortality remains high due to intrinsic or acquired resistance to therapy. Several ongoing efforts are being made to develop novel drugs to treat this pathology with the aim to overcome resistance, prolong patient survival and improve their quality of life. We have previously shown that the non-hypercalcemic vitamin D analogues EM1 and UVB1 display antitumor effects in preclinical studies employing conventional cell lines and animal models developed from these cells. In this work, we explored the antitumor effects of EM1 and UVB1 employing BC cells derived from patient-derived xenografts (PDXs), which are a powerful preclinical tool for testing new drugs. We demonstrated that the analogues reduced the viability of HER2-positive and Triple Negative BC-PDXs. Moreover, using an in vitro model of acquired resistance to Trastuzumab-emtansine, UVB1 displayed anti-proliferative actions under 2D and 3D culture conditions. It inhibited both formation and growth of established organoids. In addition, a direct correlation between UVB1 antitumor effects and VDR expression in PDXs was found. In conclusion, all the results reinforce the potential use of these vitamin D analogues as antitumor agents to treat HER2-positive and Triple Negative BC.


Subject(s)
Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Triple Negative Breast Neoplasms/drug therapy , Vitamin D/pharmacology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Quality of Life , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Vitamin D/analogs & derivatives , Xenograft Model Antitumor Assays
6.
ACS Omega ; 5(40): 26049-26055, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33073131

ABSTRACT

An unexpected ring expansion that converts hydrindanes into decalins via an unprecedented dyotropic reaction involving a mesylate group has been observed, and this paved the way for easy access to polyfunctionalized chiral decalins. These polyfunctionalized chiral decalins can be very useful building blocks for the synthesis of the thia analogues of many natural compounds. They can also be used in asymmetric catalysis and also in the synthesis of the new analogues of vitamin D with a modified D ring and side chain. The use of chiral sulfoxide ligands for asymmetric catalysis or asymmetric sulfur ylide-mediated epoxidation of carbonyl compounds is a very important topic in the field of organic chemistry, hence our results could be useful to the scientific community.

8.
J Steroid Biochem Mol Biol ; 200: 105649, 2020 06.
Article in English | MEDLINE | ID: mdl-32142933

ABSTRACT

The vitamin D receptor (VDR) constitutes a promising therapeutic target for the treatment of cancer. Unfortunately, its natural agonist calcitriol does not have clinical utility due to its potential to induce hypercalcemic effects at the concentrations required to display antitumoral activity. For this reason, the search for new calcitriol analogues with adequate therapeutic profiles has been actively pursued by the scientific community. We have previously reported the obtaining and the biological activity evaluation of new calcitriol analogues by modification of its sidechain, which exhibited relevant antiproliferative and selectivity profiles against tumoral and normal cells. In this work we conducted molecular modeling studies (i.e. molecular docking, molecular dynamics, constant pH molecular dynamics (CpHMD) and free energy of binding analysis) to elucidate at an atomistic level the molecular basis related to the potential of the new calcitriol analogues to achieve selectivity between tumoral and normal cells. Two histidine residues (His305 and His397) were found to exhibit a particular tautomeric configuration that produces the observed bioactivity. Also, different acid-based properties were observed for His305 and His307 with His305 showing an increased acidity (pKa 5.2) compared to His397 (pKa 6.8) and to the typical histidine residue. This behavior favored the pharmacodynamic interaction of the calcitriol analogues exhibiting selectivity for tumoral cells when VDR was modeled at the more acidic tumoral environment (pH ≅ 6) compared to the case when VDR was modeled at pH 7.4 (normal cell environment). On the other hand, non-selective compounds, including calcitriol, exhibited a similar interaction pattern with VDR when the receptor was modeled at both pH conditions. The results presented constitute the first evidence on the properties of the VDR receptor in different physicochemical environments and thus represent a significant contribution to the in silico screening and design of new calcitriol analogues.


Subject(s)
Models, Molecular , Receptors, Calcitriol/metabolism , Calcitriol/metabolism , Histidine/metabolism , Humans , Hydrogen-Ion Concentration , Ligands , Receptors, Calcitriol/chemistry , Tumor Microenvironment
9.
Curr Top Med Chem ; 20(9): 713-719, 2020.
Article in English | MEDLINE | ID: mdl-31985378

ABSTRACT

BACKGROUND: Due to the rapid development of microbial resistance, finding new molecules became urgent to counteract this problem. OBJECTIVE: The objective of this work is to access 1,2,3-triazene-1,3-disubstituted, a class of molecule with high therapeutic potential. METHODS: Here we describe the access to 17 new triazene including six with an imidazole-1,2,3-triazene moiety and eleven with an alkyl-1,2,3-triazene moiety and their evaluation against five strains: two gram (-): Escherichia coli ATCC 25921 and Pseudomonas aeruginosa ATCC 27253; two gram (+) : Staphylococcus aureus ATCC 38213 and Enterococcus faecalis ATCC 29212; and one fungi: Candida albicans ATCC 24433. RESULTS: All strains were sensitive and the best MIC, 0.28 µM, is observed for 4c against Escherichia coli ATCC 25921. Compound 9, 3-isopropynyltriazene, appears to be the most interesting since it is active on the five evaluated strains with satisfactory MIC 0.32 µM against Escherichia coli and Pseudomonas aeruginosa and 0.64 µM against Enterococcus faecalis and Pseudomonas aeruginosa. CONCLUSION: Comparing the structure activity relationship, electron withdrawing groups appear to increase antimicrobial activity.


Subject(s)
Anti-Infective Agents/chemistry , Small Molecule Libraries/chemistry , Triazenes/chemistry , Candida albicans/drug effects , Drug Evaluation, Preclinical , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Triazenes/pharmacology
10.
Arch Pharm (Weinheim) ; 352(5): e1800315, 2019 May.
Article in English | MEDLINE | ID: mdl-31025400

ABSTRACT

The active form of vitamin D3 , calcitriol, is a potent antiproliferative compound. However, when effective antitumor doses of calcitriol are used, hypercalcemic effects are observed, thus blocking its therapeutic application. To overcome this problem, structural analogues have been designed with the aim of retaining or even increasing the antitumor effects while decreasing its calcemic activity. This report aims at gaining insights into the structure-activity relationships of the novel oxolane-containing analogue, AM-27, recently synthesized. We herein demonstrate that this compound has antiproliferative and antimigratory effects in squamous cell carcinoma, glioblastoma, and breast cancer cell lines. Analyses of the mechanisms underlying the AM-27 effects on cell viability revealed induction of apoptosis by the analogue. Importantly, nonmalignant cell lines were little or not affected by the compound. In addition, the analogue did not produce hypercalcemia in mice. Also, in silico studies involving docking and molecular dynamics techniques showed that AM-27 is able to bind to the human vitamin D receptor with a higher affinity than the natural ligand calcitriol, a feature that is mostly derived from an electrostatic interaction pattern. Altogether, the proapoptotic effect observed in cancer cells, the lack of calcemic activity in mice, and the differential effects in normal cells suggest the potential of AM-27 as a therapeutic compound for cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Calcitriol/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Calcitriol/chemical synthesis , Calcitriol/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Computer Simulation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
11.
J Steroid Biochem Mol Biol ; 185: 118-136, 2019 01.
Article in English | MEDLINE | ID: mdl-30125657

ABSTRACT

Calcitriol analogs have shown promising potential as compounds to be used in cancer chemotherapy. This report presents the synthesis of a novel vitamin D3 derivative with an amide and a carboxyl group in its side chain, called ML-344. In addition, we report its in vitro antitumor activity and its in vivo calcemic effects. We demonstrate that the analog decreases cell viability and retards cell migration of different breast, glioblastoma and head and neck cancer cell lines. Additionally, unlike calcitriol, ML-344 does not display citotoxicity to the murine non-malignant mammary cells and human astrocytes. In concordance with the antimigratory effects found in breast cancer cells, ML-344 decreased the invasive capacity and induced a rearrangement of the actin cytoskeleton in the LM3 breast cancer cell line. In relation to the in vivo studies, the analog did not cause hypercalcemic effects in CF1 mice administered daily at 5 µg/Kg of body weight during a period of 264 h. Finally, computational studies were performed to evaluate the potential binding of the analog to the vitamin D receptor and the in silico assays showed that ML-344 is able to bind to VDR with interesting particularities and greater affinity than calcitriol. Altogether, these results suggest that ML-344 has a promising potential as an antitumor agent with a differential effect between tumor and non-malignant cells.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Glioblastoma/drug therapy , Head and Neck Neoplasms/drug therapy , Receptors, Calcitriol/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Astrocytes/drug effects , Calcitriol/chemical synthesis , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Humans , Male , Mice
12.
J Steroid Biochem Mol Biol ; 178: 22-35, 2018 04.
Article in English | MEDLINE | ID: mdl-29102624

ABSTRACT

Glioblastoma multiforme (GBM) is the worst and most common brain tumor, characterized by high proliferation and invasion rates. The current standard treatment is mainly based on chemoradiotherapy and this approach has slightly improved patient survival. Thus, novel strategies aimed at prolonging the survival and ensuring a better quality of life are necessary. In the present work, we investigated the antitumoral effect of the novel analogue of calcitriol EM1 on GBM cells employing in vitro, in silico, and in vivo assays. In vitro, we demonstrated that EM1 treatment selectively decreases the viability of murine and human tumor cells without affecting that of normal human astrocytes. The analysis of the mechanisms showed that EM1 produces cell cycle arrest in the T98G cell line, which is accompanied by an increase in p21, p27, p57 protein levels and a decrease in cyclin D1, p-Akt-S473, p-ERK1/2 and c-Jun expression. Moreover, EM1 treatment also exerts in GBM cells anti-migratory effects and decreases their invasive capacity by a reduction in MMP-9 proteolytic activity. In silico, we demonstrated that EM1 is able to bind to the vitamin D receptor with greater affinity than calcitriol. Finally, we showed that EM1 treatment of nude mice administered at 50ug/kg body weight during 21days neither induces hypercalcemia nor toxicity effects. In conclusion, all the results indicate the potential of EM1 analogue as a promising therapeutic alternative for GBM treatment.


Subject(s)
Apoptosis/drug effects , Calcitriol/pharmacology , Cell Cycle/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Glioblastoma/pathology , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Adhesion/drug effects , Glioblastoma/drug therapy , Humans , Male , Mice , Mice, Nude , Tumor Cells, Cultured , Vitamins/pharmacology
13.
Org Lett ; 19(13): 3648-3651, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28641016

ABSTRACT

An unexpected ring expansion converting hydrindane cores into decalins has been observed. The process occurs under very mild conditions and with exquisite transfer of chiral information. The ring expansion provides access to decorated decalins with complete stereocontrol. The reaction mechanism is studied in order to gain insight into the underlying causes for the low thermal requirements in this reaction and the nature of the chirality transfer process. Interestingly, both result from an unprecedented dyotropic reaction involving a mesylate group.

14.
Eur J Med Chem ; 134: 86-96, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28399453

ABSTRACT

Synthetic analogs of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) have been developed with the goal of improving the biological profile of the natural hormone for therapeutic applications. Derivatives of 1,25(OH)2D3 with the oxolane moiety branched in the side chain at carbon C20, act as Vitamin D nuclear Receptor (VDR) superagonists being several orders of magnitude more active than the natural ligand. Here, we describe the synthesis and biological evaluation of three diastereoisomers of (1S, 3R)-Dihydroxy-(20S)-[(2″-hydroxy-2″-propyl)-tetrahydrofuryl]-22,23,24,25,26,27-hexanor-1α-hydroxyvitamin D3, with different stereochemistry at positions C2 and C5 of the oxolane ring branched at carbon C22 (1, C2RC5S; 2, C2SC5R; 3, C2SC5S). These compounds act as weak VDR agonist in transcriptional assays with compound 3 being the most active. X-ray crystallographic analysis of the VDR ligand-binding domain accommodating the three compounds indicates that the oxolane group branched at carbon C22 is not constrained as in case of compound with oxolane group branched at C20 leading to the loss of interactions of the triene group and increased flexibility of the C/D-rings and of the side chain.


Subject(s)
Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Receptors, Calcitriol/agonists , Animals , COS Cells , Chlorocebus aethiops , Crystallography, X-Ray , HEK293 Cells , Humans , Models, Molecular , Receptors, Calcitriol/chemistry , Receptors, Calcitriol/metabolism , Stereoisomerism , Structure-Activity Relationship , Zebrafish
15.
Anal Bioanal Chem ; 409(10): 2547-2558, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28116494

ABSTRACT

Vitamin D3 and its metabolites are lipophilic molecules with low aqueous solubility and must be transported bound to plasma carrier proteins, primarily to vitamin D binding protein (DBP). The biological functions of vitamin D3 metabolites are intimately dependent on the protein, hence the importance of determining their affinity for DBP. In this study, we developed a novel procedure for measuring the kinetic and equilibrium constants of human-DBP with vitamin D3 and three metabolites: 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 25-hydroxyvitamin D3 (25OHD3) and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] by surface plasmon resonance (SPR). At the same time, five different analogues, synthetized in our laboratory, were evaluated in order to compare the affinity values with the metabolites. Real-time SPR measurements showed that 25OHD3 and 24,25(OH)2D3 had higher affinity (0.3 µM) than 1,25(OH)2D3 (5 µM), with the higher affinity of 25OHD3 and 24,25(OH)2D3 due to dissociation constants 1 order of magnitude slower. In the case of the analogues, the affinity values were lower, with 1-hydroxy-25-nitro-vitamin D3 (NO2-446), structurally closer to 1,25(OH)2D3, showing the highest value with a K D of 50 µM. (24R)-1,25-dihydroxyvitamin-24-buthyl-28-norvitamin D2 (Bu-471) and (24R)-1,25-dihydroxyvitamin-24-phenyl-28-norvitamin D2 (Ph-491), structurally similar, had affinities of 180 and 170 µM, respectively. (22R,23E)-1-hydroxy-22-ethenyl-25-methoxy-23-dehydrovitamin D3 (MeO-455) and 1-hydroxy-20(R)-[5(S)-(2,2-dimethyltetrahydropyran-5-yl)]-22,23-dinor vitamin D3 (Oxan-429) had affinities of 310 and 100 µM, respectively. The binding of the metabolites and analogues was reversible allowing the rapid capture of data for replicates. The kinetic and equilibrium data for both the metabolites and the analogues fitted to the Langmuir model describing a 1:1 interaction. Graphical Abstract Label-free, real time binding study between vitamin D binding protein immmobilized on the surface of a SPR sensor chip and the vitamin D, metabolites and analogues passed over it as analytes.


Subject(s)
Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Vitamin D-Binding Protein/metabolism , Vitamin D/analogs & derivatives , Vitamin D/metabolism , Binding, Competitive , Humans , Kinetics , Vitamin D-Binding Protein/chemistry
17.
ACS Chem Neurosci ; 8(5): 1026-1035, 2017 05 17.
Article in English | MEDLINE | ID: mdl-27977122

ABSTRACT

The regulation of brain monoamine levels is paramount for cognitive functions, and the monoamine oxidase (MAO A and B) enzymes play a central role in these processes. The aim of this study was to evaluate whether the procognitive properties exerted by propargylamine N-(furan-2-ylmethyl)-N-methylprop-2-yn-1-amine (F2MPA) are related to changes in monoamine content via MAO inhibition. In vivo microdialysis and ex vivo amine metabolite measurement demonstrated region-specific alterations in monoamine metabolism that differ from both of the classic MAO A and MAO B inhibitors, clorgyline and l-deprenyl, respectively. Although all the inhibitors (1 and 4 mg/kg) increased cortical serotonin tissue content, only F2MPA increased the levels of cortical noradrenaline. In the striatum, clorgyline (1 mg/kg), but not F2MPA (1 mg/kg), reduced extracellular levels of dopamine metabolites at rest or stimulated by the intrastriatal application of the MAO substrate 3-methoxytyramine. In vitro, F2MPA exhibited a low affinity toward MAO B and MAO A. Nonetheless, it modified the B form of MAO, forming a flavin adduct structurally similar to that with deprenyl. F2MPA was rapidly metabolized in the presence of rat but not human microsomes, producing a hydroxylated derivative. In conclusion, the effect of F2MPA on cognition may arise from monoaminergic changes in the cortex, but the role of MAO in this process is likely to be negligible, consistent with the poor affinity of F2MPA for MAO.


Subject(s)
Cerebral Cortex/drug effects , Furans/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Norepinephrine/metabolism , Serotonin/metabolism , Animals , Cerebral Cortex/metabolism , Clorgyline/pharmacology , Male , Microdialysis , Rats , Rats, Sprague-Dawley , Selegiline/pharmacology
18.
J Steroid Biochem Mol Biol ; 163: 193-205, 2016 10.
Article in English | MEDLINE | ID: mdl-27208626

ABSTRACT

Vitamin D has been shown to display a wide variety of antitumour effects, but their therapeutic use is limited by its severe side effects. We have designed and synthesized a Gemini vitamin D analogue of calcitriol (UVB1) which has shown to display antineoplastic effects on different cancer cell lines without causing hypercalcemia. The aim of this work has been to investigate, by employing in silico, in vitro, and in vivo assays, whether UVB1 inhibits human colorectal carcinoma progression. We demonstrated that UVB1 induces apoptotic cell death and retards cellular migration and invasion of HCT116 colorectal carcinoma cells. Moreover, the analogue reduced the tumour volume in vivo, and modulated the expression of Bax, E-cadherin and nuclear ß-catenin in tumour animal tissues without producing toxic effects. In silico analysis showed that UVB1 exhibits greater affinity for the ligand binding domain of vitamin D receptor than calcitriol, and that several characteristics in the three-dimensional conformation of VDR may influence the biological effects. These results demonstrate that the Gemini vitamin D analogue affects the growth of the colorectal cancer and suggest that UVB1 is a potential chemotherapeutic agent for treatment of this disease.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Receptors, Calcitriol/chemistry , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Animals , Antigens, CD , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Binding Sites , Cadherins/genetics , Cadherins/metabolism , Cell Movement/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Progression , HCT116 Cells , Humans , Ligands , Mice , Mice, Nude , Molecular Docking Simulation , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Calcitriol/antagonists & inhibitors , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/chemistry , Xenograft Model Antitumor Assays , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
19.
J Steroid Biochem Mol Biol ; 154: 285-93, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26365558

ABSTRACT

The active form of vitamin D3, calcitriol, plays a major role in maintaining calcium/phosphate homeostasis. In addition, it is a potent antiproliferative and prodifferentiating agent. However, when effective antitumor doses of calcitriol are employed, hypercalcemic effects are observed, thus precluding its therapeutic application. To overcome this problem, structural analogues have been designed with the aim at retaining or even increasing the antitumor effects while decreasing its calcemic activity. This report shows the biological evaluation of an alkynylphosphonate vitamin D less-calcemic analogue in a murine model of breast cancer. We demonstrate that this compound has potent anti-metastatic effects through its action over cellular migration and invasion likely mediated through the up-regulation of E-cadherin expression. Based on the current in vitro and in vivo results, EM1 is a promising candidate as a therapeutic agent in breast cancer.


Subject(s)
Breast Neoplasms/pathology , Calcitriol/pharmacology , Neoplasm Metastasis/prevention & control , Organophosphonates/pharmacology , Animals , Calcitriol/analogs & derivatives , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C
20.
Arch Pharm (Weinheim) ; 348(5): 315-29, 2015 May.
Article in English | MEDLINE | ID: mdl-25864390

ABSTRACT

The active form of vitamin D3, 1α,25(OH)2D3, plays a major role in maintaining calcium/phosphate homeostasis. In addition, it is a potent antiproliferative and pro-differentiating agent. Unfortunately, it usually causes hypercalcemia in vivo when effective antitumour doses are used. It has therefore been found necessary to synthesise new analogues that retain or even increase the antitumour effects but preclude hypercalcemia. This report presents the synthesis of a novel Gemini vitamin D analogue (UVB1) and its biological evaluation. We demonstrate that this compound has potent antitumoural effects over a wide panel of tumour cell lines while showing lack of hypercalcemic activity and toxicity effects in in vivo assays.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Hypercalcemia/chemically induced , Neoplasms/drug therapy , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Calcium/blood , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Design , Female , Humans , Hypercalcemia/blood , Inhibitory Concentration 50 , Male , Mice , Mice, Nude , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship , Time Factors , Vitamin D/chemical synthesis , Vitamin D/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...