Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Lab Chip ; 24(11): 2927-2943, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38591995

ABSTRACT

Platelets play an essential role in thrombotic processes. Recent studies suggest a direct link between increased plasma glucose, lipids, and inflammatory cytokines with platelet activation and aggregation, resulting in an increased risk of atherothrombotic events in cardiovascular patients. Antiplatelet therapies are commonly used for the primary prevention of atherosclerosis. Transitioning from a population-based strategy to patient-specific care requires a better understanding of the risks and advantages of antiplatelet therapy for individuals. This proof-of-concept study evaluates the potential to assess an individual's risk of forming atherothrombosis using a dual-channel microfluidic model emulating multiple atherogenic factors in vitro, including high glucose, high cholesterol, and inflammatory cytokines along with stenosis vessel geometry. The model shows precise sensitivity toward increased plasma glucose, cholesterol, and tumour necrosis factor-alpha (TNF-α)-treated groups in thrombus formation. An in vivo-like dose-dependent increment in platelet aggregation is observed in different treated groups, benefiting the evaluation of thrombosis risk in the individual condition. Moreover, the model could help decide the effective dosing of aspirin in multi-factorial complexities. In the high glucose-treated group, a 50 µM dose of aspirin could significantly reduce platelet aggregation, while a 100 µM dose of aspirin was required to reduce platelet aggregation in the glucose-TNF-α-treated group, which proves the model's potentiality as a tailored tool for customised therapy.


Subject(s)
Lab-On-A-Chip Devices , Platelet Aggregation , Thrombosis , Thrombosis/drug therapy , Thrombosis/prevention & control , Humans , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism , Atherosclerosis/drug therapy , Aspirin , Blood Platelets/drug effects , Blood Platelets/cytology
2.
Adv Biol (Weinh) ; 6(7): e2101316, 2022 07.
Article in English | MEDLINE | ID: mdl-35666057

ABSTRACT

Atherothrombosis, an atherosclerotic plaque disruption condition with superimposed thrombosis, is the underlying cause of cardiovascular episodes. Herein, a unique design is presented to develop a microfluidic site-specific atherothrombosis-on-chip model, providing a universal platform for studying the crosstalk between blood cells and plaque components. The device consists of two interconnected microchannels, namely main and supporting channels: the former mimics the vessel geometry with different stenosis, and the latter introduces plaque components to the circulation simultaneously. The unique design allows the site-specific introduction of plaque components in stenosed channels ranging from 0% to above 50%, resulting in thrombosis, which has not been achieved previously. The device successfully explains the correlation between vessel geometry and thrombus formation phenomenon as well as the influence of shear rate on platelet aggregation, confirming the reliability and the effectiveness of the design. The device exhibits significant sensitivity to aspirin. In therapeutic doses (50 × 10-6 and 100 × 10-6 m), aspirin delays and prevents platelet adhesion, thereby reducing the thrombus area in a dose-dependent manner. Finally, the device is effectively employed in testing the targeted binding of the RGD (arginyl-glycyl-aspartic acid) labeled polymeric nanoparticles on the thrombus, extending the use of the device to examine targeted drug carriers.


Subject(s)
Plaque, Atherosclerotic , Thrombosis , Aspirin , Drug Discovery , Humans , Microfluidics , Plaque, Atherosclerotic/drug therapy , Reproducibility of Results , Thrombosis/drug therapy
3.
Lab Chip ; 22(15): 2789-2800, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35587546

ABSTRACT

Inertial microfluidics functions solely based on the fluid dynamics at relatively high flow speed. Thus, channel geometry is the critical design parameter that contributes to the performance of the device. Four basic channel geometries (i.e., straight, expansion-contraction, spiral and serpentine) have been proposed and extensively studied. To further enhance the performance, innovative channel design through combining two or more geometries is promising. This work explores embedding periodic concave and convex obstacle microstructures in sinusoidal channels and investigates their influence on particle inertial focusing and separation. The concave obstacles could significantly enhance the Dean flow and tune the flow range for particle inertial focusing and separation. Based on this finding, we propose a cascaded device by connecting two sinusoidal channels consecutively for rare cell separation. The concave obstacles are embedded in the second channel to adapt its operational flow rates and enable the functional operation of both channels. Polystyrene beads and breast cancer cells (T47D) spiking in the blood were respectively processed by the proposed device. The results indicate an outstanding separation performance, with 3 to 4 orders of magnitude enhancement in purity for samples with a primary cancer cells ratio of 0.01% and 0.001%, respectively. Embedding microstructures as obstacles brings more flexibility to the design of inertial microfluidic devices, offering a feasible new way to combine two or more serial processing units for high-performance separation.


Subject(s)
Microfluidic Analytical Techniques , Cell Separation , Microfluidics , Polystyrenes
4.
Nanoscale Horiz ; 7(4): 414-424, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35237777

ABSTRACT

Microfluidic technologies have been widely used for single-cell studies as they provide facile, cost-effective, and high-throughput evaluations of single cells with great accuracy. Capturing single cells has been investigated extensively using various microfluidic techniques. Furthermore, cell retrieval is crucial for the subsequent study of cells in applications such as drug screening. However, there are no robust methods for the facile release of the captured cells. Therefore, we developed a stretchable microfluidic cell trapper for easy on-demand release of cells in a deterministic manner. The stretchable microdevice consists of several U-shaped microstructures to capture single cells. The gap at the bottom edge of the microstructure broadens when the device is stretched along its width. By tuning the horizontal elongation of the device, ample space is provided to release particle/cell sizes of interest. The performance of the stretchable microdevice was evaluated using particles and cells. A deterministic release of particles was demonstrated using a mixture of 15 µm and 20 µm particles. The retrieval of the 15 µm particles and the 20 µm particles was achieved with elongation lengths of 1 mm and 5 mm, respectively. Two different cell lines, T47D breast cancer cells and J774A.1 macrophages, were employed to characterise the cell release capability of the device. The proposed stretchable micro cell trapper provided a deterministic recovery of the captured cells by adjusting the elongation length of the device. We believe that this stretchable microfluidic platform can provide an alternative method to facilely release trapped cells for subsequent evaluation.


Subject(s)
Microfluidics , Particle Size
5.
Biosensors (Basel) ; 12(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35200380

ABSTRACT

Plasma extraction from blood is essential for diagnosis of many diseases. The critical process of plasma extraction requires removal of blood cells from whole blood. Fluid viscoelasticity promotes cell migration towards the central axis of flow due to differences in normal stress and physical properties of cells. We investigated the effects of altering fluid viscoelasticity on blood plasma extraction in a serpentine microchannel. Poly (ethylene oxide) (PEO) was dissolved into blood to increase its viscoelasticity. The influences of PEO concentration, blood dilution, and flow rate on the performance of cell focusing were examined. We found that focusing performance can be significantly enhanced by adding PEO into blood. The optimal PEO concentration ranged from 100 to 200 ppm with respect to effective blood cell focusing. An optimal flow rate from 1 to 15 µL/min was determined, at least for our experimental setup. Given less than 1% haemolysis was detected at the outlets in all experimental combinations, the proposed microfluidic methodology appears suitable for applications sensitive to haemocompatibility.


Subject(s)
Microfluidics , Plasma , Polyethylene Glycols/chemistry , Secologanin Tryptamine Alkaloids/chemistry , Viscosity
6.
Lab Chip ; 22(3): 423-444, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35048916

ABSTRACT

Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Acoustics , Cell Separation , Microfluidic Analytical Techniques/methods , Microfluidics/methods
7.
Electrophoresis ; 42(21-22): 2230-2237, 2021 11.
Article in English | MEDLINE | ID: mdl-34396540

ABSTRACT

Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 µm polystyrene particles, 5 µm polystyrene particles, 5 µm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.


Subject(s)
Microfluidic Analytical Techniques , Elasticity , Erythrocytes , Lab-On-A-Chip Devices , Microfluidics , Polystyrenes , Viscosity
8.
Lab Chip ; 21(10): 2008-2018, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34008666

ABSTRACT

Inertial microfluidics is a simple, low cost, efficient size-based separation technique which is being widely investigated for rare-cell isolation and detection. Due to the fixed geometrical dimensions of the current rigid inertial microfluidic systems, most of them are only capable of isolating and separating cells with certain types and sizes. Herein, we report the design, fabrication, and validation of a stretchable inertial microfluidic device with a tuneable separation threshold that can be used for heterogenous mixtures of particles and cells. Stretchability allows for the fine-tuning of the critical sorting size, resulting in a high separation resolution that makes the separation of cells with small size differences possible. We validated the tunability of the separation threshold by stretching the length of a microchannel to separate the particle sizes of interest. We also evaluated the focusing efficiency, flow behaviour, and the positions of cancer cells and white blood cells (WBCs) in an elongated channel, separately. In addition, the performance of the device was verified by isolating cancer cells from WBCs which revealed a high recovery rate and purity. The stretchable chip showed promising results in the separation of cells with comparable sizes. Further validation of the chip using whole blood spiked with cancer cells delivered a 98.6% recovery rate with 90% purity. Elongating a stretchable microfluidic chip enables onsite modification of the dimensions of a microchannel leading to a precise tunability of the separation threshold as well as a high separation resolution.


Subject(s)
Microfluidics , Neoplasms , Cell Separation , Lab-On-A-Chip Devices , Leukocytes , Particle Size
9.
Anal Chem ; 92(18): 12473-12480, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32786464

ABSTRACT

Inertial microfluidics is a promising approach for particle separation because of the superior advantages of high throughput, simplicity, precise manipulation, and low cost. However, the current obstacle of inertial microfluidics in biological applications is the broad size distribution of biological microparticles. Most devices only work well for a narrow range of particle sizes. For focusing and separating a new set of particles, troublesome and time-consuming design, fabrication, testing, and optimization procedures are needed. As such, it is of particular interest to design a microfluidic device that can be tuned and adjusted to separate particles of various sizes. This paper reports on the proof of concept for a stretchable microfluidic device that can control the length via a stretching platform. By changing the channel dimensions, the device can be adapted to different particle sizes and flow rate ratios. We successfully demonstrate this approach with the separation of a mixture of 10 and 15 µm particles. Stretching the device significantly improves the focusing and separation efficiency of the specific particle sizes. We also show that there is an optimum stretching length, which results in the best separation performance. The proof of concept reported here is the first step toward designing stretchable inertial microfluidic devices that can be implemented for a wide range of biological and medical applications.

10.
Micromachines (Basel) ; 10(12)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795397

ABSTRACT

Miniaturization has been the driving force of scientific and technological advances over recent decades. Recently, flexibility has gained significant interest, particularly in miniaturization approaches for biomedical devices, wearable sensing technologies, and drug delivery. Flexible microfluidics is an emerging area that impacts upon a range of research areas including chemistry, electronics, biology, and medicine. Various materials with flexibility and stretchability have been used in flexible microfluidics. Flexible microchannels allow for strong fluid-structure interactions. Thus, they behave in a different way from rigid microchannels with fluid passing through them. This unique behaviour introduces new characteristics that can be deployed in microfluidic applications and functions such as valving, pumping, mixing, and separation. To date, a specialised review of flexible microfluidics that considers both the fundamentals and applications is missing in the literature. This review aims to provide a comprehensive summary including: (i) Materials used for fabrication of flexible microfluidics, (ii) basics and roles of flexibility on microfluidic functions, (iii) applications of flexible microfluidics in wearable electronics and biology, and (iv) future perspectives of flexible microfluidics. The review provides researchers and engineers with an extensive and updated understanding of the principles and applications of flexible microfluidics.

SELECTION OF CITATIONS
SEARCH DETAIL
...