Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e32440, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961939

ABSTRACT

In recent years, the use of a horizontal spinning disc reactor (SDR) as a photocatalytic reactor for the degradation of various pollutants in aqueous solutions has increased. This study was searched based on the PRISMA method. Two autonomous researchers carried out for the relevant studies using Scopus, Web of Science (WOS), and Science Direct databases. The search terms expanded focusing on the performance of horizontal spinning disc photocatalytic reactor (SDPR). In this review article, the main objective of the effect of operational factors on the efficiency of the degradation of pollutants with changes in the type of light source (range of visible light and UV radiation), disc rotational speed, flow rate, initial concentration of pollutants, pH, type of disc structure and flow regime are considered. Current challenges in SDPR include issues such as limited mass transfer, uneven light distribution, and difficulties in scaling up. To overcome these challenges, improvements can be made by optimizing reactor design for better mass transfer, enhancing light distribution through advanced light sources or reactor configurations, and developing scalable models that maintain efficiency at larger scales. Additionally, the use of innovative materials and coatings could improve the overall performance of SDPR.

2.
Sci Rep ; 14(1): 15054, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38956159

ABSTRACT

This study aimed to develop a highly efficient nanocomposite composed of magnetic chitosan/molybdenum disulfide (CS/MoS2/Fe3O4) for the removal of three polycyclic aromatic hydrocarbons (PAHs)-pyrene, anthracene, and phenanthrene. Novelty was introduced through the innovative synthesis procedure and the utilization of magnetic properties for enhanced adsorption capabilities. Additionally, the greenness of chitosan as a sorbent component was emphasized, highlighting its biodegradability and low environmental impact compared to traditional sorbents. Factors influencing PAH adsorption, such as nanocomposite dosage, initial PAH concentration, pH, and contact time, were systematically investigated and optimized. The results revealed that optimal removal efficiencies were attained at an initial PAH concentration of 150 mg/L, a sorbent dose of 0.045 g, pH 6.0, and a contact time of 150 min. The pseudo-second-order kinetic model exhibited superior fitting to the experimental data, indicating an equilibrium time of approximately 150 min. Moreover, the equilibrium adsorption process followed the Freundlich isotherm model, with kf and n values exceeding 7.91 mg/g and 1.20, respectively. Remarkably, the maximum absorption capacities for phenanthrene, anthracene, and pyrene on the sorbent were determined as 217 mg/g, 204 mg/g, and 222 mg/g, respectively. These findings underscore the significant potential of the CS/MoS2/Fe3O4 nanocomposite for efficiently removing PAHs from milk and other dairy products, thereby contributing to improved food safety and public health.


Subject(s)
Chitosan , Disulfides , Milk , Molybdenum , Nanocomposites , Polycyclic Aromatic Hydrocarbons , Disulfides/chemistry , Nanocomposites/chemistry , Chitosan/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/isolation & purification , Molybdenum/chemistry , Milk/chemistry , Animals , Adsorption , Kinetics , Hydrogen-Ion Concentration
3.
Sci Rep ; 14(1): 10566, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719873

ABSTRACT

Conventional wastewater treatment processes are often unable to remove antibiotics with resistant compounds and low biological degradation. The need for advanced and sustainable technologies to remove antibiotics from water sources seems essential. In this regard, the effectiveness of a spinning disc photocatalytic reactor (SDPR) equipped with a visible light-activated Fe3O4@SiO2-NH2@CuO/ZnO core-shell (FSNCZ CS) thin film photocatalyst was investigated for the decomposition of amoxicillin (AMX), a representative antibiotic. Various characterization techniques, such as TEM, FESEM, EDX, AFM, XRD, and UV-Vis-DRS, were employed to study the surface morphology, optoelectronic properties, and nanostructure of the FSNCZ CS. Key operating parameters such as irradiation time, pH, initial AMX concentration, rotational speed, and solution flow rate were fine-tuned for optimization. The results indicated that the highest AMX decomposition (98.7%) was attained under optimal conditions of 60 min of irradiation time, a rotational speed of 350 rpm, a solution flow rate of 0.9 L/min, pH of 5, and an initial AMX concentration of 20 mg/L. Moreover, during the 60 min irradiation time, more than 69.95% of chemical oxygen demand and 61.2% of total organic carbon were removed. After the photocatalytic decomposition of AMX, there is a substantial increase in the average oxidation state and carbon oxidation state in SDPR from 1.33 to 1.94 and 3.2, respectively. Active species tests confirmed that ·OH and ·O2- played a dominant role in AMX decomposition. The developed SDPR, which incorporates a reusable and robust FSNCZ CS photocatalyst, demonstrates promising potential for the decomposition of organic compounds.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Light , Nanostructures , Catalysis , Anti-Bacterial Agents/chemistry , Nanostructures/chemistry , Amoxicillin/chemistry , Water Pollutants, Chemical/chemistry , Copper/chemistry , Zinc Oxide/chemistry , Silicon Dioxide/chemistry , Water Purification/methods
4.
Int J Environ Health Res ; : 1-15, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720621

ABSTRACT

This study focused on using Stipagrostis plumosa for phytoremediation to eliminate total petroleum hydrocarbons (TPHs) and heavy metals (HMs) like cadmium (Cd), chromium (Cr), lead (Pb), and nickel (Ni) from oil-contaminated soil. Conducted over six months at a field-scale without artificial pollutants, soil samples were analyzed using gas chromatography‒mass spectrometry (GC‒MS) for TPHs and inductively coupled plasma-optical emission spectroscopy (ICP‒OES) for HMs. Results after six months revealed that plots with plants had significantly higher average removal percentages for TPHs (61.45%), Cd (39.4%), Cr (46.1%), Pb (41.5%), and Ni (44.2%) compared to the control group (p <0.05). Increased microbial respiration and bacteria populations in planted plots indicated enhanced soil microbial growth. Kinetic rate models aligned well with the first-order kinetic rate model for all pollutants (R2 >0.9). Overall, the study demonstrates that S. plumosa can effectively reduce TPHs and HMs in oil-contaminated soil, making it a promising option for pollutant absorption.

5.
Sci Rep ; 13(1): 16185, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758793

ABSTRACT

Antibiotics are resistant compounds with low biological degradation that generally cannot be removed by conventional wastewater treatment processes. The use of yolk-shell nanostructures in spinning disc photocatalytic reactor (SDPR) enhances the removal efficiency due to their high surface-to-volume ratio and increased interaction between catalyst particles and reactants. The purpose of this study is to investigate the SDPR equipped to Fe3O4@void@CuO/ZnO yolk-shell thin film nanostructure (FCZ YS) in the presence of visible light illumination in the photocatalytic degradation of amoxicillin (AMX) from aqueous solutions. Stober, co-precipitation, and self-transformation methods were used for the synthesis of FCZ YS thin film nanostructure and the physical and chemical characteristics of the catalyst were analyzed by XRD, VSM,, EDX, FESEM, TEM, AFM, BET, contact angle (CA), and DRS. Then, the effect of different parameters including pH (3-11), initial concentration of AMX (10-50 mg/L), flow rate (10-25 mL/s) and rotational speed (100-400 rpm) at different times in the photocatalytic degradation of AMX were studied. The obtained results indicated that the highest degradation efficiency of 97.6% and constant reaction rate of AMX were obtained under LED visible light illumination and optimal conditions of pH = 5, initial AMX concentration of 30 mg/L, solution flow rate of 15 mL/s, rotational speed of 300 rpm and illumination time of 80 min. The durability and reusability of the nanostructure were tested, that after 5 runs had a suitable degradation rate. Considering the appropriate efficiency of amoxicillin degradation by FCZ YS nanostructure, the use of Fe3O4@void@CuO/ZnO thin film in SDPR is suggested in water and wastewater treatment processes.

6.
Water Sci Technol ; 87(5): 1029-1042, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36919731

ABSTRACT

In this work, Mn2O3/Fe2O3 (MFO) was synthesized and used to activate monopersulfate (MPS) for the degradation of ciprofloxacin (CIP). The effect of several parameters was studied on CIP degradation. Under the optimum conditions (pH = 6.3 (natural pH), MFO = 300 mg/L and MPS = 2 mM), around 92% of CIP was decomposed. Nitrite, phosphate and bicarbonate ions had a strong inhibitory effect on the MFO/MPS process while the effect of chloride and nitrate ions was neutral. The catalytic activity of MFO was also studied by other chemical oxidants such as peroxydisulfate, periodate, hydrogen peroxide, percarbonate and peracetic acid. Scavenging tests showed that the role of sulfate radicals is more than hydroxyl radicals. MFO exhibited high catalytic activity in four recycling with insignificant leaching of Mn and Fe. During CIP oxidation, 45.5% carbon mineralization occurred and antibacterial activity of treated CIP solution was reduced. Finally, MFO/MPS was applied on actual wastewater (hospital effluent) and the results showed that MFO/MPS can be considered as a practical method for the treatment of contaminated water with emerging pollutants.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Ciprofloxacin/pharmacology , Ciprofloxacin/analysis , Oxides , Anti-Bacterial Agents/pharmacology , Oxidation-Reduction , Hydrogen Peroxide
7.
Environ Sci Pollut Res Int ; 30(16): 46727-46740, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36725800

ABSTRACT

Traditional strategies for waste management in developing countries face high-cost problems, severe pollution, limited viable data, lack of global coverage, inefficiency, and slowness. The rapid expansion of the Internet have made new opportunities in waste management, especially waste collection. Online waste management in developing countries can create a revolution and help the government and society to achieve the goals of sustainable development. In this study, a modified three-layer business model canvas (TLBMC) was used to describe the duties of each actors involved in waste management and interactions between different elements in order to show the existing capacities in view point of economic, social, and environmental dimensions. In this online marketplace, the flow of information, the flow of materials and the flow of money in any company or entity or person active in the field of waste, are effectively connected to each other. Supply and demand information is provided in the created platform, and various waste actors are connected to look for options to trade. After agreement between the customer and the buyer, the information is delivered from the website or platform created by the supplier to the applicant. This network can have its usual structural features and create appropriate mechanisms for the continuation of its business operation and the realization of sustainable development of waste management, especially the recycling industry.


Subject(s)
Sustainable Development , Waste Management , Humans , Waste Management/methods , Environmental Pollution , Commerce , Recycling/methods , Solid Waste/analysis
8.
J Environ Health Sci Eng ; 19(1): 831-836, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33758671

ABSTRACT

Covid-19 Pandemic leads to medical services for the society all over the world. The Covid-19 pandemic influence the waste management and specially medical waste management. In this study, the effect of the Covid-19 outbreak on medical waste was evaluated via assessing the solid waste generation, composition, and management status in five hospitals in Iran. The results indicated that the epidemic Covid-19 leads to increased waste generation on average 102.2 % in both private and public hospitals. In addition, the ratio of infectious waste in the studied hospitals increased by an average of 9 % in medical waste composition and 121 % compared with before COVID-19 pandemic. Changes in plans and management measurement such as increasing the frequency of waste collection per week leads to lower the risk of infection transmission from medical waste in the studied hospitals. The results obtained from the present research clearly show the changes in medical waste generation and waste composition within pandemic Covid-19. In addition, established new ward, Covid-19 ward with high-infected waste led to new challenges which should be managed properly by change in routine activities.

9.
J Environ Manage ; 266: 110616, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32392147

ABSTRACT

Furfural is a toxic compound that can cause many problems for human health and the environment. In this study, we addressed the degradation of furfural in aqueous solution using the activated persulfate (SPS) and peroxymonosulfate (PMS) through the ultrasonic (US) wave. Besides, the effect of various parameters (pH, oxidizing dose, initial furfural concentration, US frequency, Inorganic anions concentration, and scavenger) on SPS + US (SPS/US) and PMS + US (PMS/US) processes were examined. The results showed, in order to furfural removal, the US had excellent efficiency in activating SPS and PMS, as in SPS/US and PMS/US processes, 95.3% and 58.4% of furfural (at 25 mg/L concentration) was decomposed in 90 min, respectively. The furfural degradation rate increased with increasing oxidizing dose and US frequency in both SPS/US and PMS/US processes. Considering the synergistic effect, the best removal rate has occurred in the SPS/US process. In the SPS/US and PMS/US processes, furfural removal increased at natural pH (pH 7), and the presence of inorganic anions such as NO3- and Cl- had negative effects on furfural removal efficiency. Also CO32- and HCO3- acted as a radical scavenger in the SPS/US process but these anions in the PMS/US process produced more SO4-° radicals, and subsequently, they increased the furfural degradation rate. The results also showed that the predominant radical in the oxidation reactions is the sulfate radical. This study showed that the SPS/US and PMS/US processes are promising methods for degrading organic pollutants in the environment.


Subject(s)
Ultrasonic Waves , Water Pollutants, Chemical , Furaldehyde , Oxidation-Reduction , Peroxides
10.
MethodsX ; 6: 391-398, 2019.
Article in English | MEDLINE | ID: mdl-30906697

ABSTRACT

CH4 has a high potential for energy production and by utilizing the proper technology, large amounts of energy can be extracted from it. This study aimed to estimate the amounts of methane emissions from the municipal solid waste landfill in Yasuj city using LandGEM software. The LandGEM model which is used for this aim is based on input data of open landfill year, land closure year, methane production rate, potential methane production capacity, and waste acceptance rate. According to the results, methane gas production during the years 2009, 2010, 2011 and 2012 was obtained to be 250, 275, 303, and 330 m3/h respectively. The results also showed that maximum methane production rate occurred during the years 2010-2012 and then reduced with a soft slope from 2012. The method and results of this research can be used for design and execute of methane gas collection systems and also, control of greenhouse gases emission for the landfills.

SELECTION OF CITATIONS
SEARCH DETAIL
...