Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Histochem ; 119(3): 273-283, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28238410

ABSTRACT

The morphological description of normal tissues is fundamental for making comparisons and in order to identify injuries and lesions. The aim of this work was to describe the morphological characteristics of the female Mongolian gerbil's (Meriones unguiculatus) normal mammary gland, the average expression of hormone receptors, and the average proliferation rates in the epithelial cells during the periods of lactation, pregnancy and involution. Dams were euthanized on the 14th and 21st gestational days, 7 and 14days after parturition, and 3 and 5days after weaning. The dams' mammary tissues were processed and were submitted to haematoxylin and eosin staining, Periodic Acid Schiff (PAS) staining, and Gomori's Reticulin staining. Additionally, immunohistochemistry was performed for the characterization of myoepithelial cells with α-actin, the proliferation rates with proliferating cell nuclear antigen (PCNA), the estrogen hormonal receptors (ESR1 and ESR2), and progesterone receptor (PR) quantifications. It was observed that the abundant adipose tissues were replaced by glandular epithelia and there was an increase in the epithelial cell's height (from 5.97 to 32.4µm in 14th and 21st gestational days and from 20.64 to 25.4µm in 7th and 14th lactational days, respectively) and the acini diameters (from 24.88 to 69.92µm in 14th and 21st gestational days and from 139.69 to 118.59µm in 7th and 14th lactational days, respectively) with the progression of gestation and lactation. The PAS staining intensity varied throughout the glands and between the stages that were evaluated. The extracellular matrix showed different phenotypes too, with more of a presence of the Type I collagen during the early gestation and involution and with more reticular fibers (Type III collagen) during the late gestation period and lactation. The myoepithelial layers showed alterations in their distribution with thick patterns as verified by the α-actin labeling. The PCNA showed higher rates of the marked cells in 14th and 21st gestational days (40.25 and 60.28%) and in 7th and 14th lactational days (64.08 and 65.08%). The hormone receptor quantifications showed a high variation in the rates: the average PR staining decreased from 14th to 21st gestational days (from 42.3 to 8.54%), from 7th to 14th lactational days (from 59.83 to 23.18%) and from 3rd to 5th days after weaning (from 39.98 to 12.72). There were higher averages of ESR1 staining in gestational days 14 and 21(from 58.06 to 30.02%). ESR2 staining decreased during gestation (25.7 and 12.94% in 14th and 21st gestational days)and involution (from 50.97 to 30.18% in 3rd and 5th days after weaning). The Mongolian gerbils showed similar morphological characteristics when they were compared to mice and rats. However, the higher proliferation rates with a smaller involution period compared to other murine characterized this species as being adequate for mammary pathologies studies.


Subject(s)
Gerbillinae/physiology , Lactation , Mammary Glands, Animal/cytology , Mammary Glands, Animal/physiology , Animals , Cell Proliferation , Epithelial Cells/cytology , Female , Gerbillinae/anatomy & histology , Gerbillinae/growth & development , Immunohistochemistry , Mice , Pregnancy , Proliferating Cell Nuclear Antigen/metabolism , Rats
2.
Environ Toxicol ; 32(2): 477-489, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26945824

ABSTRACT

In rodents, the final growth and maturation of the prostate occur at puberty, a crucial period for prostate development. The present study is a serological, morphological, morphometric, and immunohistochemical analysis of the effects of exposure to ethinylestradiol (EE) (15 µg/kg/day) during puberty (EE/PUB group) on the male ventral and female prostate in senile gerbils. In the study, male and female gerbils (Meriones unguiculatus) (42 days) received by gavage 15 µg/kg/day of EE (a component of the contraceptive pill), diluted in 100 µL of Nujol® for 1 week (EE/PUB group). In the control group, males and females were not treated. Animals were killed (n = 5) after 12 months in the experimental groups. In the senile male in the EE/PUB group, we observed a reduction in testosterone levels and a decrease in the prostatic epithelial thickness, as well as in the thickness of the muscle layer. In addition, an increase in PIN multiplicity and prostatic inflammation was observed. In the senile female in the EE/PUB group, we observed increased testosterone and estradiol levels, an enhanced prostatic epithelial thickness and an increase in the thickness of the muscle layer. Immunohistochemical analysis revealed an increase in positive cells (%) for AR and PCNA in the male prostate and an increase in positive basal cells for p63 in the female prostate of the EE/PUB group. Exposure to EE during puberty resulted in an inhibitory action on the male ventral prostate and an anabolic effect on the female prostate in senile gerbils. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 477-489, 2017.


Subject(s)
Aging/drug effects , Ethinyl Estradiol/toxicity , Prostate/drug effects , Animals , Enzyme-Linked Immunosorbent Assay , Estradiol/blood , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Female , Gerbillinae , Immunohistochemistry , Male , Proliferating Cell Nuclear Antigen/metabolism , Prostate/metabolism , Prostate/pathology , Testosterone/blood , Trans-Activators/metabolism , Vimentin
3.
Asian J Androl ; 19(2): 160-167, 2017.
Article in English | MEDLINE | ID: mdl-26780870

ABSTRACT

The prostate is an accessory sex gland that develops under precise androgenic control. It is known that hormonal imbalance may disrupt its development predisposing this gland to develop diseases during aging. Although the hypothesis regarding earlier origins of prostate diseases was proposed many years ago, the mechanisms underlying this complex phenomenon are poorly understood. Therefore, the aim of this study was to evaluate the prostates of old male gerbils exposed to testosterone during intrauterine and postnatal life using morphological, biometrical, stereological, Kariometric, immunohistochemical, and immunofluorescence analyses. Our findings demonstrate that prenatal and pubertal exposure to testosterone increases the susceptibility to the development of prostate diseases during aging. The presence of a more proliferative gland associated with foci of adenomatous hyperplasia in animals exposed to testosterone during the prenatal and pubertal phase show that the utero life and the pubertal period are important phases for prostatic morphophysiology establishment, which is a determinant for the health of the gland during aging. Therefore, these findings reinforce the idea that prostate disease may result from hormonal disruptions in early events during prostate development, which imprint permanently on the gland predisposing it to develop lesions in later stages of life.


Subject(s)
Aging , Androgens/pharmacology , Prenatal Exposure Delayed Effects/pathology , Prostate/drug effects , Prostatic Hyperplasia/pathology , Testosterone/pharmacology , Animals , Endocrine Disruptors , Female , Fluorescent Antibody Technique , Gerbillinae , Immunohistochemistry , Male , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Prostate/metabolism , Prostate/pathology , Prostatic Hyperplasia/metabolism , Puberty , Receptors, Androgen/metabolism
4.
Reprod Fertil Dev ; 29(9): 1751-1762, 2017 09.
Article in English | MEDLINE | ID: mdl-27737729

ABSTRACT

The female prostate is a reproductive gland that typically presents a morphology similar to that of the male gland and is highly developed in female Mongolian gerbils. Two main cell populations compose the epithelium gland: basal and secretory luminal cells. However, during postnatal development, diverse secretory cell phenotypes are distributed among the typical ones. Prostate homeostasis is under the control of sexual hormones, such as oestrogen and progesterone. After hormonal deprivation the female gland undergoes several morphophysiological changes. The objective of this study was to identify and characterise, structurally and ultrastructurally, the cellular heterogeneity of the female prostate epithelium in normal conditions and after ovariectomy. Histological routine stains, such as haematoxylin-eosin, periodic acid-Schiff and silver impregnation, as well as immunocytochemical techniques were used to enable identification of the different cell types. Some secretory cells types were identified and characterised as mucinous, basophil, clear, ciliated, droplet, spumous and neuroendocrine cells. Population tally data showed that the hormonal suppression caused by ovariectomy resulted in a decrease in the proportions of basophil and clear cells and an increase in spumous cells. Thus, the secretory epithelial cells of the female gerbil prostate are not morphologically and functionally uniform, presenting a phenotypical plasticity according to the hormonal environment in which they operate.


Subject(s)
Epithelium/anatomy & histology , Genitalia, Female/anatomy & histology , Ovariectomy , Animals , Epithelium/ultrastructure , Female , Genitalia, Female/ultrastructure , Gerbillinae , Microscopy, Electron, Transmission
5.
Gen Comp Endocrinol ; 201: 53-64, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24726986

ABSTRACT

Despite the worldwide distribution and many unique reproductive adaptations that bats present, many aspects of their reproductive hormonal regulation have not been adequately studied, especially in species that presented patterns of total testicular regression. Thus, this study aimed to evaluate the testicular expression of 17ß-HSD type 1, aromatase and ERα in the bat Myotis nigricans, during the four periods of its reproductive cycle. Immunoreactivity for ERα was detected only in the cytoplasm of elongated spermatids and in the nuclei of spermatogonia and Sertoli cells. Expression of aromatase was observed in round and elongated spermatids and in Sertoli and Leydig cells. Immunoreactivity for 17ß-HSD was restricted to the cytoplasm of Leydig cells. The three expression patterns varied significantly during the four periods of the reproductive cycle. Expression of ERα and aromatase in spermatids was continuous, while expression of ERα in spermatogonia occurred only in initial types (Ap). Expression of ERα and aromatase in Sertoli cells varied, with expression only in periods of spermatogenetic activities; and the same variation was observed for the expression of aromatase and 17ß-HSD in Leydig cells. We, therefore, propose that the processes of total testicular regression and posterior recrudescence suffered by M. nigricans from September to January in the northwest of the São Paulo State of Brazil, are directly regulated by testosterone and estrogen. This occurs via the production of testosterone by 17ß-HSD, its conversion into estrogen by aromatase, and activation/deactivation of Sertoli cells' AR and spermatogonia's ERα.


Subject(s)
17-Hydroxysteroid Dehydrogenases/metabolism , Aromatase/metabolism , Chiroptera/metabolism , Estrogen Receptor alpha/metabolism , Testis/physiology , Animals , Estrogens/metabolism , Immunoenzyme Techniques , Leydig Cells/metabolism , Male , Sertoli Cells/metabolism , Sexual Maturation , Spermatids/metabolism , Spermatogenesis , Testosterone/metabolism
6.
Prostate ; 73(11): 1202-13, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23620436

ABSTRACT

BACKGROUND: Characterization of novel rodent models for prostate cancer studies requires evaluation of either spontaneous and carcinogen-induced tumors as well as tumor incidence in different prostatic lobes. We propose a new short-term rodent model of chemically induced prostate carcinogenesis in which prostate cancer progression occurs differentially in the dorsolateral and ventral lobes. METHODS: Adult gerbils were treated with MNU alone or associated with testosterone for 3 or 6 months of treatment. Tumor incidence, latency, localization, and immunohistochemistry (AR, PCNA, smooth muscle α-actin, p63, MGMT, and E-cadherin) were studied in both lobes. RESULTS: Comparisons between both lobes revealed that lesions developed first in the DL while the VL presented longer tumor latency. However, after 6 months, there was a dramatic increase in tumor multiplicity in the VL, mainly in MNU-treated groups. Lesions clearly progressed from a premalignant to a malignant phenotype over time and tumor latency was decreased by MNU + testosterone administration. Three-dimensional reconstruction of the prostatic complex showed that the DL developed tumors exclusively in the periurethral area and showed intense AR, PCNA, and MGMT immunostaining. Moreover, VL lesions emerged throughout the entire lobe. MNU-induced lesions presented markers indicative of an aggressive phenotype: lack of basal cells, rupture of the smooth muscle cell layer, loss of E-cadherin, and high MGMT staining. CONCLUSIONS: There are distinct pathways involved in tumor progression in gerbil prostate lobes. This animal provides a good model for prostate cancer since it allows the investigation of advanced steps of carcinogenesis with shorter latency periods in both lobes.


Subject(s)
Alkylating Agents/toxicity , Disease Models, Animal , Disease Progression , Methylnitrosourea/toxicity , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/pathology , Testosterone/toxicity , Animals , Gerbillinae , Male , Prostate/drug effects , Prostate/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...