Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Legal Med ; 127(3): 603-10, 2013 May.
Article in English | MEDLINE | ID: mdl-23208617

ABSTRACT

BACKGROUND: Phosphatidylethanol (PEth) is currently under investigation as a highly sensitive and specific marker of alcohol misuse. As its stability in blood samples has not systematically been investigated, a study was performed to determine the stability of major PEth species in spiked and authentic whole blood and also in matching dried blood spots (DBS) at different conditions. METHODS: To PEth-free blood from teetotalers, low and high concentrations of two major PEth (18:1/18:1 and 16:0/18:1) species were added chosen on the basis of concentrations determined from authentic samples which were collected from the subjects undergoing alcohol detoxification treatment. Effects of sampling (EDTA or heparinized tubes), temperature, and time (≤30 days) were investigated. Processed samples (two at each condition, respectively) were subjected to LC gradient separation using multiple reaction monitoring. Stability was assessed using the critical difference or a periodic analysis result that was within 15 % of the initial concentration. Reaction kinetics of degradation was investigated with rate constants being checked for an Arrhenius relationship. RESULTS: PEth was stable in dried blood spot (DBS) stored either at room temperature or frozen, whereas it was not stable in whole blood except in samples stored at -80 °C. Activation energies increased in the following order: spiked heparinized blood < spiked EDTA blood < authentic EDTA blood. CONCLUSIONS: PEth is a labile analyte which is predominantly degraded by hydrolysis. Only at -80 °C, stability in whole blood can be ascertained, and analysis should be performed within 30 days. EDTA should be preferred over heparin as an additive. DBS is able to stabilize PEth thus partly resolving pre-analytical difficulties of PEth measurement.


Subject(s)
Alcoholism/blood , Blood Preservation/methods , Blood Stains , Glycerophospholipids/blood , Substance Abuse Detection/methods , Anticoagulants/pharmacology , Biomarkers/blood , Case-Control Studies , Chromatography, Liquid , Edetic Acid/pharmacology , Heparin/pharmacology , Humans , Linear Models , Tandem Mass Spectrometry
2.
Anal Bioanal Chem ; 401(4): 1163-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21743983

ABSTRACT

Phosphatidylethanol (PEth), which is formed extrahepatically by the action of phospholipase D on phosphatidylcholine in the presence of ethanol, has been suggested as a promising marker of alcohol misuse. Analysis of dried blood spots (DBS) is particularly advantageous for the determination of delicate analytes such as PEth. Therefore, measurement of PEth species (18:1/18:1, 16:0/18:1) in DBS versus whole blood was performed to ascertain whether respective results are directly comparable. Samples were obtained from subjects (n = 40) undergoing alcohol detoxification treatment. Analysis involved liquid-liquid extraction from both, DBS and whole blood (100 µL, respectively), with phosphatidylpropanol as the internal standard. Extracts were subjected to LC gradient separation using multiple reaction monitoring of deprotonated molecules. Results from measurements of corresponding DBS and whole blood specimens were compared by estimating the respective mean values and by a Bland and Altman analysis. Concentrations of PEth 18:1/18:1 ranged from 46.1 to 3,360 ng/mL in whole blood (mean, 461.7 ng/mL) and from 35.8 to 3,360 ng/mL in DBS (mean, 457.6 ng/mL); for PEth 16:0/18:1, concentrations were from 900 to 213,000 ng/mL (mean, 23,375 ng/mL) and 922-213,000 ng/mL (mean, 23,470 ng/mL) in blood and DBS, respectively. Estimated mean differences were -4.3 ng/mL for PEth 18:1/18:1 and 95.8 ng/mL for PEth 16:0/18:1. The Bland-Altman plot of both PEth species showed that the variation around the mean difference was similar all through the range of measured values and that all differences except one were within the limits of agreement. It could be shown that the determination of PEth species in DBS is as reliable as in whole blood samples. This assay may facilitate monitoring of alcohol misuse.


Subject(s)
Blood Chemical Analysis , Chromatography, Liquid , Dried Blood Spot Testing/methods , Glycerophospholipids/blood , Mass Spectrometry , Alcoholism/blood , Biomarkers/blood , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...