Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Neurobiol ; 61(1): 239-251, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37603152

ABSTRACT

Bacterial meningitis is considered a life-threatening condition with high mortality rates. In response to the infection, signaling cascades, producing pro-inflammatory mediators trigger an exacerbated host immune response. Another inflammatory pathway occurs through the activation of inflammasomes. Studies highlight the role of the NLR family pyrin domain containing 3 (NLRP3) in central nervous system disorders commonly involved in neuroinflammation. We aimed to investigate the role of NLRP3 and its inhibitor MCC950 on neurochemical, immunological, and behavioral parameters in the early and late stages of experimental pneumococcal meningitis. For this, adult male Wistar rats received an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a placebo. The animals were divided into control/saline, control/MCC950, meningitis/saline, and meningitis/MCC950. Immediately after the meningitis induction, the animals received 140 ng/kg MCC950 via intracisternal injection. For the acute protocol, 24 h after induction, brain structures were collected to evaluate cytokines, NLRP3, and microglia. In the long-term group, the animals were submitted to open field and recognition of new objects tests at ten days after the meningitis induction. After the behavioral tests, the same markers were evaluated. The animals in the meningitis group at 24 h showed increased levels of cytokines, NLRP3, and IBA-1 expression, and the use of the MCC950 significantly reduced those levels. Although free from infection, ten days after meningitis induction, the animals in the meningitis group had elevated cytokine levels and demonstrated behavioral deficits; however, the single dose of NLRP3 inhibitor rescued the behavior deficits and decreased the brain inflammatory profile.


Subject(s)
Meningitis, Pneumococcal , Animals , Male , Rats , Cytokines/metabolism , Inflammasomes/metabolism , Memory Disorders , Meningitis, Pneumococcal/complications , Meningitis, Pneumococcal/drug therapy , Models, Theoretical , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Wistar , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
2.
Neurotherapeutics ; 18(1): 640-653, 2021 01.
Article in English | MEDLINE | ID: mdl-32886341

ABSTRACT

Pneumococcal meningitis is a life-threatening infection of the central nervous system (CNS), and half of the survivors of meningitis suffer from neurological sequelae. We hypothesized that pneumococcal meningitis causes CNS inflammation via the disruption of the blood-brain barrier (BBB) and by increasing the receptor for advanced glycation end product (RAGE) expression in the brain, which causes glial cell activation, leading to cognitive impairment. To test our hypothesis, 60-day-old Wistar rats were subjected to meningitis by receiving an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a control group and were treated with a RAGE-specific inhibitor (FPS-ZM1) in saline. The rats also received ceftriaxone 100 mg/kg intraperitoneally, bid, and fluid replacements. Experimental pneumococcal meningitis triggered BBB disruption after meningitis induction, and FPS-ZM1 treatment significantly suppressed BBB disruption. Ten days after meningitis induction, surviving animals were free from infection, but they presented increased levels of TNF-α and IL-1ß in the prefrontal cortex (PFC); high expression levels of RAGE, amyloid-ß (Aß1-42), and microglial cell activation in the PFC and hippocampus; and memory impairment, as evaluated by the open-field, novel object recognition task and Morris water maze behavioral tasks. Targeted RAGE inhibition was able to reduce cytokine levels, decrease the expression of RAGE and Aß1-42, inhibit microglial cell activation, and improve cognitive deficits in meningitis survivor rats. The sequence of events generated by pneumococcal meningitis can persist long after recovery, triggering neurocognitive decline; however, RAGE blocker attenuated the development of brain inflammation and cognitive impairment in experimental meningitis.


Subject(s)
Cognitive Dysfunction/etiology , Meningitis, Pneumococcal/complications , Receptor for Advanced Glycation End Products/metabolism , Animals , Benzamides/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blotting, Western , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Disease Models, Animal , Interleukin-1beta/metabolism , Male , Meningitis, Pneumococcal/drug therapy , Morris Water Maze Test/drug effects , Neuroprotective Agents/pharmacology , Open Field Test/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
3.
J Psychiatr Res ; 100: 71-83, 2018 05.
Article in English | MEDLINE | ID: mdl-29494891

ABSTRACT

Evidence suggest that prenatal immune system disturbance contributes largely to the pathophysiology of neuropsychiatric disorders. We investigated if maternal immune activation (MIA) could induce inflammatory alterations in fetal brain and pregnant rats. Adult rats subjected to MIA also were investigated to evaluate if ketamine potentiates the effects of infection. On gestational day 15, Wistar pregnant rats received lipopolysaccharide (LPS) to induce MIA. After 6, 12 and 24 h, fetus brain, placenta, and amniotic fluid were collected to evaluate early effects of LPS. MIA increased oxidative stress and expression of metalloproteinase in the amniotic fluid and fetal brain. The blood brain barrier (BBB) integrity in the hippocampus and cortex as well integrity of placental barrier (PB) in the placenta and fetus brain were dysregulated after LPS induction. We observed elevated pro- and anti-inflammatory cytokines after LPS in fetal brain. Other group of rats from postnatal day (PND) 54 after LPS received injection of ketamine at the doses of 5, 15, and 25 mg/kg. On PND 60 rats were subjected to the memories tests, spontaneous locomotor activity, and pre-pulse inhibition test (PPI). Rats that receive MIA plus ketamine had memory impairment and a deficit in the PPI. Neurotrophins were increased in the hippocampus and reduced in the prefrontal cortex in the LPS plus ketamine group. MIA induced oxidative stress and inflammatory changes that could be, at least in part, related to the dysfunction in the BBB and PB permeability of pregnant rats and offspring. Besides, this also generates behavioral deficits in the rat adulthood's that are potentiated by ketamine.


Subject(s)
Behavior, Animal , Blood-Brain Barrier/immunology , Brain , Cytokines/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Inflammation/immunology , Ketamine/pharmacology , Lipopolysaccharides/pharmacology , Memory Disorders , Placenta/immunology , Pregnancy Complications/immunology , Prepulse Inhibition , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/drug effects , Brain/immunology , Brain/physiopathology , Embryo, Mammalian , Female , Inflammation/etiology , Male , Memory Disorders/chemically induced , Memory Disorders/immunology , Memory Disorders/physiopathology , Pregnancy , Pregnancy Complications/chemically induced , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Rats , Rats, Wistar
4.
Mol Neurobiol ; 52(1): 734-40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25284351

ABSTRACT

Pneumococcal meningitis is a serious infection of the central nervous system (CNS) with high fatality rates that causes reduced psychomotor performance, slight mental slowness, impairments in attention executive functions and learning and memory deficiencies. Previously, we demonstrated a correlation between memory impairment and decreased levels of brain-derived neurotropic factor (BDNF) in the hippocampi of rats subjected to pneumococcal meningitis. Emerging evidence demonstrates that histone acetylation regulates neurotrophins; therefore, a potential molecular intervention against cognitive impairment in bacterial meningitis may be the histone deacetylase (HDAC) inhibitor, sodium butyrate, which stimulates the acetylation of histones and increases BDNF expression. In this study, animals received either artificial cerebrospinal fluid as a placebo or a Streptococcus pneumoniae suspension at a concentration of 5 × 10(9) colony-forming units (CFU/mL). The animals received antibiotic treatment as usual and received saline or sodium butyrate as an adjuvant treatment. Ten days after, meningitis was induced; the animals were subjected to open-field habituation and the step-down inhibitory avoidance task. Immediately after these behavioural tasks, the animals were killed, and their hippocampi were removed to evaluate the expression of BDNF, nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF). In the meningitis group that received saline, the animals presented memory impairment in both behavioural tasks, and hippocampal BDNF and GDNF expression was decreased. Sodium butyrate was able to prevent memory impairment and re-establish hippocampal neurotrophin expression in experimental pneumococcal meningitis.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Butyric Acid/therapeutic use , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Meningitis, Pneumococcal/complications , Meningitis, Pneumococcal/drug therapy , Animals , Avoidance Learning/drug effects , Butyric Acid/pharmacology , Habituation, Psychophysiologic , Male , Memory Disorders/complications , Nerve Growth Factor/metabolism , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL