Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cathet Cardiovasc Diagn ; 32(3): 262-3, 1994 Jul.
Article in English | MEDLINE | ID: mdl-7954776

ABSTRACT

An adult with an asymptomatic mediastinal arterio-venous fistula is presented. The diagnosis was established using angiography and oximetry after noninvasive imaging failed to identify the source of a continuous murmur. The literature is reviewed.


Subject(s)
Arteriovenous Fistula/congenital , Brachiocephalic Trunk/abnormalities , Mediastinal Diseases/congenital , Subclavian Artery/abnormalities , Adult , Arteriovenous Fistula/diagnosis , Female , Humans , Mediastinal Diseases/diagnosis
2.
Circulation ; 89(5): 2315-26, 1994 May.
Article in English | MEDLINE | ID: mdl-8181158

ABSTRACT

BACKGROUND: Myocardium undergoes complex cellular and histochemical alterations after acute myocardial infarction. These structural changes directly affect the mechanical stiffness of infarcted and remote myocardia. Previous investigations of infarct stiffness have been limited to uniaxial testing, which does not provide a unique description of the tissue's three-dimensional material properties. This study describes the first serial measurements of biaxial mechanical properties of sheep myocardium after anteroapical infarction. METHODS AND RESULTS: Anteroapical infarctions of 23.7 +/- 2.5% of the left ventricular mass were produced by coronary arterial ligation in sheep. Biaxial force-extension measurements were made on freshly excised squares (6.45 cm2) of remote, noninfarcted, and infarcted myocardia before and 4 hours, 1 week, 2 weeks, and 6 weeks after ligation. Adjacent myocardial samples were assayed for hydroxyproline content. Force-extension data and a derived constitutive equation were used to describe stresses and strains and material properties of each sample. In sheep, anteroapical infarctions evolve into thin left ventricular aneurysms that consist of predominantly fibrous tissue with disrupted groups of muscle cells encased in scar. In the infarct, Cauchy stresses at 15% extensions (control stresses: circumferential, sigma C, 19.4 +/- 3.3 g/cm2; longitudinal, sigma L, 54.8 +/- 34.8 g/cm2) increase within 4 hours, peak at 1 to 2 weeks (sigma C, 338.5 +/- 143.6 g/cm2; sigma L, 310.7 +/- 45.9 g/cm2), and then decrease 6 weeks after infarction (sigma C, 115 +/- 47.2 g/cm2; sigma L, 53.2 +/-28.9 g/cm2). Stresses in the remote myocardium follow a similar time course but to a lesser extent than the infarcted region. Hydroxyproline content, a measure of collagen content, does not correlate with infarct stiffness but progressively increases to 69.7 +/- 7.6 micrograms/mg after 6 weeks. Stress-extension curves demonstrate directional anisotropy of both infarcted and remote myocardia. CONCLUSIONS: The findings indicate that infarcted myocardium becomes more stiff during the first 1 to 2 weeks after anteroapical infarction and then more compliant. The infarct also exhibits directional anisotropy. These observations underscore the importance of ventricular material properties during the remodeling process after acute myocardial infarction and may partially explain the progressive left ventricular dilatation and functional deterioration that occur in some patients after anteroapical infarction.


Subject(s)
Heart Aneurysm/physiopathology , Heart/physiopathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Ventricular Function, Left/physiology , Animals , Elasticity , Heart Aneurysm/pathology , Hydroxyproline/analysis , Myocardial Contraction/physiology , Myocardial Infarction/pathology , Sheep , Stress, Mechanical , Time Factors
3.
Circulation ; 87(1): 199-207, 1993 Jan.
Article in English | MEDLINE | ID: mdl-8419008

ABSTRACT

BACKGROUND: This study was designed to examine the bulk electrical properties of myocardium and their variation with the evolution of infarction after coronary occlusion. These properties may be useful in distinguishing between normal, ischemic, and infarcted tissue on the basis of electrophysiological parameters. METHODS AND RESULTS: The electrical impedance of myocardial tissue was studied in a sheep model of infarction. The animal model involved a one-stage ligation of the left anterior descending and second diagonal arteries at a point 40% of the distance from the apex to the base. By use of a four-electrode probe, an epicardial mapping system was developed that allowed for cardiac cycle gated and signal-averaged measurements. Subthreshold current (15 microA) was injected through two of the electrodes at frequencies of 1, 5, and 15 kHz and the induced potential measured with the other two electrodes. Epicardial maps of the left ventricle were obtained during acute infarction and at 1-, 2-, and 6-week intervals after occlusion. Results showed the average specific impedance of the myocardium before infarction to be 158 +/- 26 omega-cm independent of location on the epicardium. By 60 minutes after coronary occlusion, the specific impedance had increased by 199% (p < 0.005, n = 9); it remained elevated for up to 4 hours. One week after infarction, the specific impedance decreased to 59% of the control value (p < 0.025, n = 8). Six weeks after occlusion, the specific impedance remained low at 57% of that of the noninfarcted tissue (p < 0.005, n = 9). The phase angle of the complex impedance was also measured and revealed similar changes. The hydroxyproline content of the tissue was assayed to assess infarct healing. CONCLUSIONS: In this animal model, impedance is a bulk electrical property of tissue that varies with the evolution of myocardial infarction. Impedance mapping revealed significantly different values for normal, ischemic, and infarcted tissue and may prove useful in better defining the electrophysiological characteristics of such tissue.


Subject(s)
Coronary Disease/physiopathology , Heart Aneurysm/physiopathology , Heart/physiopathology , Animals , Coronary Circulation , Electric Conductivity , Electrophysiology/methods , Hydroxyproline/metabolism , Image Processing, Computer-Assisted , Microspheres , Models, Theoretical , Myocardium/metabolism , Sheep , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...