Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cancer Causes Control ; 35(4): 661-669, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38010586

ABSTRACT

PURPOSE: Liver cancer incidence among American Indians/Alaska Natives has risen over the past 20 years. Peripheral blood DNA methylation may be associated with liver cancer and could be used as a biomarker for cancer risk. We evaluated the association of blood DNA methylation with risk of liver cancer. METHODS: We conducted a prospective cohort study in 2324 American Indians, between age 45 and 75 years, from Arizona, Oklahoma, North Dakota and South Dakota who participated in the Strong Heart Study between 1989 and 1991. Liver cancer deaths (n = 21) were ascertained using death certificates obtained through 2017. The mean follow-up duration (SD) for non-cases was 25.1 (5.6) years and for cases, 11.0 (8.8) years. DNA methylation was assessed from blood samples collected at baseline using MethylationEPIC BeadChip 850 K arrays. We used Cox regression models adjusted for age, sex, center, body mass index, low-density lipoprotein cholesterol, smoking, alcohol consumption, and immune cell proportions to examine the associations. RESULTS: We identified 9 CpG sites associated with liver cancer. cg16057201 annotated to MRFAP1) was hypermethylated among cases vs. non-cases (hazard ratio (HR) for one standard deviation increase in methylation was 1.25 (95% CI 1.14, 1.37). The other eight CpGs were hypomethylated and the corresponding HRs (95% CI) ranged from 0.58 (0.44, 0.75) for cg04967787 (annotated to PPRC1) to 0.77 (0.67, 0.88) for cg08550308. We also assessed 7 differentially methylated CpG sites associated with liver cancer in previous studies. The adjusted HR for cg15079934 (annotated to LPS1) was 1.93 (95% CI 1.10, 3.39). CONCLUSIONS: Blood DNA methylation may be associated with liver cancer mortality and may be altered during the development of liver cancer.


Subject(s)
Indians, North American , Liver Neoplasms , Humans , Middle Aged , Aged , American Indian or Alaska Native , DNA Methylation , Prospective Studies , Indians, North American/genetics , Liver Neoplasms/epidemiology , Liver Neoplasms/genetics
2.
Environ Epigenet ; 9(1): dvac027, 2023.
Article in English | MEDLINE | ID: mdl-36694711

ABSTRACT

This review article provides a framework for the use of deoxyribonucleic acid (DNA) methylation (DNAm) biomarkers to study the biological embedding of socioeconomic position (SEP) and summarizes the latest developments in the area. It presents the emerging literature showing associations between individual- and neighborhood-level SEP exposures and DNAm across the life course. In contrast to questionnaire-based methods of assessing SEP, we suggest that DNAm biomarkers may offer an accessible metric to study questions about SEP and health outcomes, acting as a personal dosimeter of exposure. However, further work remains in standardizing SEP measures across studies and evaluating consistency across domains, tissue types, and time periods. Meta-analyses of epigenetic associations with SEP are offered as one approach to confirm the replication of DNAm loci across studies. The development of DNAm biomarkers of SEP would provide a method for examining its impact on health outcomes in a more robust way, increasing the rigor of epidemiological studies.

3.
Environ Health Perspect ; 128(6): 67005, 2020 06.
Article in English | MEDLINE | ID: mdl-32484362

ABSTRACT

BACKGROUND: The epigenetic effects of individual environmental toxicants in tobacco remain largely unexplored. Cadmium (Cd) has been associated with smoking-related health effects, and its concentration in tobacco smoke is higher in comparison with other metals. OBJECTIVES: We studied the association of Cd and smoking exposures with human blood DNA methylation (DNAm) profiles. We also evaluated the implication of findings to relevant methylation pathways and the potential contribution of Cd exposure from smoking to explain the association between smoking and site-specific DNAm. METHODS: We conducted an epigenome-wide association study of urine Cd and self-reported smoking (current and former vs. never, and cumulative smoking dose) with blood DNAm in 790,026 CpGs (methylation sites) measured with the Illumina Infinium Human MethylationEPIC (Illumina Inc.) platform in 2,325 adults 45-74 years of age who participated in the Strong Heart Study in 1989-1991. In a mediation analysis, we estimated the amount of change in DNAm associated with smoking that can be independently attributed to increases in urine Cd concentrations from smoking. We also conducted enrichment analyses and in silico protein-protein interaction networks to explore the biological relevance of the findings. RESULTS: At a false discovery rate (FDR)-corrected level of 0.05, we found 6 differentially methylated positions (DMPs) for Cd; 288 and 17, respectively, for current and former smoking status; and 77 for cigarette pack-years. Enrichment analyses of these DMPs displayed enrichment of 58 and 6 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes gene sets, respectively, including biological pathways for cancer and cardiovascular disease. In in silico protein-to-protein networks, we observed key proteins in DNAm pathways directly and indirectly connected to Cd- and smoking-DMPs. Among DMPs that were significant for both Cd and current smoking (annotated to PRSS23, AHRR, F2RL3, RARA, and 2q37.1), we found statistically significant contributions of Cd to smoking-related DNAm. CONCLUSIONS: Beyond replicating well-known smoking epigenetic signatures, we found novel DMPs related to smoking. Moreover, increases in smoking-related Cd exposure were associated with differential DNAm. Our integrative analysis supports a biological link for Cd and smoking-associated health effects, including the possibility that Cd is partly responsible for smoking toxicity through epigenetic changes. https://doi.org/10.1289/EHP6345.


Subject(s)
Cadmium , DNA Methylation , Environmental Exposure/statistics & numerical data , Smoking/epidemiology , Adult , Aged , Epigenesis, Genetic , Female , Genome-Wide Association Study , Humans , Male , Middle Aged
4.
J Steroid Biochem Mol Biol ; 167: 78-85, 2017 03.
Article in English | MEDLINE | ID: mdl-27871978

ABSTRACT

Prenatal metabolism exerts profound effects on development. The first stool of the newborn, meconium, provides a window into the prenatal metabolic environment. The objective of this study was to examine the feasibility of meconium as a novel matrix to quantify prenatal steroid levels. We quantified parameters of analytical interest regarding the use of meconium, including sample stability. We hypothesized that meconium steroid content would differ by sex, prompting analysis of meconium to test effects of prenatal steroid metabolism. Meconium from 193 newborns enrolled in the Early Autism Risk Longitudinal Investigation (EARLI) study, including 107 males, and 86 females, were analyzed by isotope dilution-liquid chromatography-high resolution mass spectrometry (ID-LC-HRMS) while blinded to identity for testosterone (T), androstenedione (AD), and dehydroepiandrosterone (DHEA). Steroid levels were compared by sex, and investigations of potential trends resulting from sample storage or processing was conducted. The unconjugated steroid content of meconium in ng/g (mean, standard deviation) was for males: T (2.67, 8.99), AD (20.01, 28.12), DHEA (13.96, 23.57) and for females: T (0.82, 1.63), AD (22.32, 24.38), DHEA (21.06, 43.49). T was higher in meconium from males (p=0.0333), and DHEA was higher in meconium from females (p=0.0202). 6 female and 3 male T values were below the limit of detection. No extreme variability in hydration or trend in steroid levels by storage time was detected. Sexually dimorphic levels of hormones may reflect gestational differentiation, and future studies should consider meconium analysis.


Subject(s)
Androsterone/chemistry , Dehydroepiandrosterone/chemistry , Meconium/chemistry , Testosterone/chemistry , Androstenedione/chemistry , Chromatography, Liquid , Cohort Studies , Female , Humans , Infant, Newborn , Male , Mass Spectrometry , Sex Factors , Temperature
5.
Disabil Health J ; 9(3): 544-51, 2016 07.
Article in English | MEDLINE | ID: mdl-26917104

ABSTRACT

BACKGROUND: The Study to Explore Early Development (SEED) is designed to enhance knowledge of autism spectrum disorder characteristics and etiologies. OBJECTIVE: This paper describes the demographic profile of enrolled families and examines sociodemographic differences between children with autism spectrum disorder and children with other developmental problems or who are typically developing. METHODS: This multi-site case-control study used health, education, and birth certificate records to identify and enroll children aged 2-5 years into one of three groups: 1) cases (children with autism spectrum disorder), 2) developmental delay or disorder controls, or 3) general population controls. Study group classification was based on sampling source, prior diagnoses, and study screening tests and developmental evaluations. The child's primary caregiver provided demographic characteristics through a telephone (or occasionally face-to-face) interview. Groups were compared using ANOVA, chi-squared test, or multinomial logistic regression as appropriate. RESULTS: Of 2768 study children, sizeable proportions were born to mothers of non-White race (31.7%), Hispanic ethnicity (11.4%), and foreign birth (17.6%); 33.0% of households had incomes below the US median. The autism spectrum disorder and population control groups differed significantly on nearly all sociodemographic parameters. In contrast, the autism spectrum disorder and developmental delay or disorder groups had generally similar sociodemographic characteristics. CONCLUSIONS: SEED enrolled a sociodemographically diverse sample, which will allow further, in-depth exploration of sociodemographic differences between study groups and provide novel opportunities to explore sociodemographic influences on etiologic risk factor associations with autism spectrum disorder and phenotypic subtypes.


Subject(s)
Autism Spectrum Disorder/epidemiology , Disabled Persons , Adolescent , Adult , Autistic Disorder/epidemiology , Caregivers , Case-Control Studies , Child , Child, Preschool , Developmental Disabilities/epidemiology , Ethnicity , Family Characteristics , Female , Humans , Income , Infant , Logistic Models , Male , Racial Groups , Social Class , Socioeconomic Factors , Surveys and Questionnaires , United States/epidemiology
6.
BMC Genomics ; 9: 405, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18759977

ABSTRACT

BACKGROUND: Identification of disease-related genes in association studies is challenged by the large number of SNPs typed. To address the dilution of power caused by high dimensionality, and to generate results that are biologically interpretable, it is critical to take into consideration spatial correlation of SNPs along the genome. With the goal of identifying true genetic associations, partitioning the genome according to spatial correlation can be a powerful and meaningful way to address this dimensionality problem. RESULTS: We developed and validated an MCMC Algorithm To Identify blocks of Linkage DisEquilibrium (MATILDE) for clustering contiguous SNPs, and a statistical testing framework to detect association using partitions as units of analysis. We compared its ability to detect true SNP associations to that of the most commonly used algorithm for block partitioning, as implemented in the Haploview and HapBlock software. Simulations were based on artificially assigning phenotypes to individuals with SNPs corresponding to region 14q11 of the HapMap database. When block partitioning is performed using MATILDE, the ability to correctly identify a disease SNP is higher, especially for small effects, than it is with the alternatives considered. Advantages can be both in terms of true positive findings and limiting the number of false discoveries. Finer partitions provided by LD-based methods or by marker-by-marker analysis are efficient only for detecting big effects, or in presence of large sample sizes. The probabilistic approach we propose offers several additional advantages, including: a) adapting the estimation of blocks to the population, technology, and sample size of the study; b) probabilistic assessment of uncertainty about block boundaries and about whether any two SNPs are in the same block; c) user selection of the probability threshold for assigning SNPs to the same block. CONCLUSION: We demonstrate that, in realistic scenarios, our adaptive, study-specific block partitioning approach is as or more efficient than currently available LD-based approaches in guiding the search for disease loci.


Subject(s)
Haplotypes , Polymorphism, Single Nucleotide , Algorithms , Computer Simulation , Genetic Predisposition to Disease , Genome, Human , Humans , Linkage Disequilibrium , Software
7.
J Am Geriatr Soc ; 54(5): 823-6, 2006 May.
Article in English | MEDLINE | ID: mdl-16696750

ABSTRACT

OBJECTIVES: To determine whether genetic variants in the ciliary neurotrophic factor (CNTF) gene are associated with muscle strength in older women. DESIGN: Cross-sectional analysis of baseline data from the Women's Health and Aging Studies I (1992) and II (1994), complementary population-based studies. SETTING: Twelve contiguous ZIP code areas in Baltimore, Maryland. PARTICIPANTS: Three hundred sixty-three Caucasian, community-dwelling women aged 70 to 79. MEASUREMENTS: Participants were genotyped at the CNTF locus for eight single nucleotide polymorphisms (SNPs), including the null allele rs1800169. The dependent variables were grip strength and the frailty syndrome, identified as presence of three or more of five frailty indicators (weakness, slowness, weight loss, low physical activity, exhaustion). In addition to genotypes, independent variables of body mass index (BMI) and osteoarthritis of the hands were included. RESULTS: Using multivariate linear regression, single SNP analysis identified five SNPs significantly associated with grip strength (P<.05), after adjusting for age, BMI, and osteoarthritis. Haplotype analysis was performed, and a single haplotype associated with grip strength was identified (P<.01). The rs1800169 null allele fully explained the association between this haplotype and grip strength under a recessive model, with individuals homozygous for the null allele exhibiting a 3.80-kg lower (95% confidence interval=1.01-6.58) grip strength. No association was seen between the CNTF null allele and frailty. CONCLUSION: Individuals homozygous for the CNTF null allele had significantly lower grip strength but did not exhibit overt frailty. Larger prospective studies are needed to confirm this finding and extend it to additional populations.


Subject(s)
Ciliary Neurotrophic Factor/genetics , Hand Strength/physiology , Leg/physiology , Muscle, Skeletal/physiology , Polymorphism, Single Nucleotide/genetics , White People/genetics , Aged , Body Mass Index , Cohort Studies , Cross-Sectional Studies , Female , Frail Elderly , Genotype , Humans
8.
BMC Genet ; 6 Suppl 1: S137, 2005 Dec 30.
Article in English | MEDLINE | ID: mdl-16451596

ABSTRACT

We explored the utility of selecting a genetically predisposed subgroup to increase the finding of a genetic signal in the Genetic Analysis Workshop 14 Collaborative Study on the Genetics of Alcoholism dataset. A subgroup of affected probands with low environmental risk exposures was defined using a susceptibility score calculated from an environmental risk model. Thirty-nine probands with highly positive scores were selected, along with their parents, for use in a genotypic transmission disequilibrium test (TDT) test. We compared the results of the genotypic TDT in this subgroup to the TDT results using all probands and their parents. For some markers, the susceptibility scoring approach resulted in smaller p-values, while for other markers, evidence for a genetic signal weakened. Further explorations into genetic and environmental population characteristics that benefit from this approach are warranted.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Linkage Disequilibrium/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...