Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38005912

ABSTRACT

Protein phosphorylation and dephosphorylation are the most common post-translational modifications mediated by protein kinases and protein phosphatases, respectively. These reversible processes can modulate the function of the target protein, such as its activity, subcellular localization, stability, and interaction with other proteins. Phosphorylation of viral proteins plays an important role in the life cycle of a virus. In this review, we highlight biological implications of the phosphorylation of the monkey polyomavirus SV40 large T and small t antigens, summarize our current knowledge of the phosphorylation of these proteins of human polyomaviruses, and conclude with gaps in the knowledge and a proposal for future research directions.


Subject(s)
Polyomavirus Infections , Polyomavirus , Humans , Polyomavirus/metabolism , Antigens, Viral, Tumor/metabolism , Phosphorylation , Protein Kinases/metabolism
2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614338

ABSTRACT

Merkel cell polyomavirus (MCPyV) is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. MCPyV large T-antigen (LTag) and small T-antigen (sTag) are the main oncoproteins involved in MCPyV-induced MCC. A hallmark of MCPyV-positive MCC cells is the expression of a C-terminal truncated LTag. Protein kinase A (PKA) plays a fundamental role in a variety of biological processes, including transcription by phosphorylating and thereby regulating the activity of transcription factors. As MCPyV LTag has been shown to be phosphorylated and acts as a transcription factor for the viral early and late promoter, we investigated whether LTag can be phosphorylayted by PKA, and whether this affects the transcript activity of LTag. Using a phosphorylation prediction algorithm, serine 191, 203, and 265 were identified as putative phosphorylation sites for PKA. Mass spectrometry of in vitro PKA-phosphorylated peptides confirmed phosphorylation of S203 and S265, but not S191. Full-length LTag inhibited early and late promoter activity of MCPyV, whereas the truncated MKL2 LTag variant stimulated both promoters. Single non-phosphorylable, as well as phosphomimicking mutations did not alter the inhibitory effect of full-length LTag. However, the non-phosphorylable mutations abrogated transactivation of the MCPyV promoters by MKL2 LTag, whereas phosphomimicking substitutions restored the ability of MKL2 LTag to activate the promoters. Triple LTag and MKL2 LTag mutants had the same effect as the single mutants. Activation of the PKA signaling pathway did not enhance MCPyV promoter activity, nor did it affect LTag expression levels in MCPyV-positive Merkel cell carcinoma (MCC) cells. Our results show that phosphorylation of truncated LTag stimulates viral promoter activity, which may contribute to higher levels of the viral oncoproteins LTag and sTag. Interfering with PKA-induced LTag phosphorylation/activity may be a therapeutic strategy to treat MCPyV-positive MCC patients.


Subject(s)
Antigens, Polyomavirus Transforming , Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Tumor Virus Infections , Humans , Carcinoma, Merkel Cell/metabolism , Carcinoma, Merkel Cell/virology , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Merkel cell polyomavirus/metabolism , Phosphorylation , Polyomavirus Infections/metabolism , Polyomavirus Infections/virology , Skin Neoplasms/metabolism , Skin Neoplasms/virology , Tumor Virus Infections/metabolism , Tumor Virus Infections/virology , Antigens, Polyomavirus Transforming/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...