Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Am J Med Genet A ; 170A(2): 471-475, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26463753

ABSTRACT

Alagille syndrome is a multisystem developmental disorder characterized by bile duct paucity, congenital heart disease, vertebral anomalies, posterior embryotoxon, and characteristic facial features. Alagille syndrome is typically the result of germline mutations in JAG1 or NOTCH2 and is one of several human diseases caused by Notch signaling abnormalities. A wide phenotypic spectrum has been well documented in Alagille syndrome. Therefore, monozygotic twins with Alagille syndrome provide a unique opportunity to evaluate potential phenotypic modifiers such as environmental factors or stochastic effects of gene expression. In this report, we describe an Alagille syndrome monozygotic twin pair with discordant placental and clinical findings. We propose that environmental factors such as prenatal hypoxia may have played a role in determining the phenotypic severity.


Subject(s)
Alagille Syndrome/diagnosis , Environment , Hypoxia/complications , Placenta/pathology , Twins, Monozygotic , Adult , Alagille Syndrome/etiology , Calcium-Binding Proteins/genetics , Female , Humans , Infant, Newborn , Intercellular Signaling Peptides and Proteins/genetics , Jagged-1 Protein , Membrane Proteins/genetics , Mutation/genetics , Pregnancy , Serrate-Jagged Proteins
3.
Am J Med Genet A ; 170(3): 750-3, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26697755

ABSTRACT

We studied two brothers who presented in the newborn period with cardiac, renal, and hepatic anomalies that were initially suggestive of ALGS, although no mutations in JAG1 or NOTCH2 were identified. Exome sequencing demonstrated compound heterozygous mutations in the NEK8 gene (Never in mitosis A-related Kinase 8), a ciliary kinase indispensable for cardiac and renal development based on murine studies. The mutations included a c.2069_2070insC variant (p.Ter693LeufsTer86), and a c.1043C>T variant (p.Thr348Met) in the highly conserved RCC1 (Regulation of Chromosome Condensation 1) domain. The RCC1 domain is crucial for localization of the NEK8 protein to the centrosomes and cilia. Mutations in NEK8 have been previously reported in three fetuses (from a single family) with renal-hepatic-pancreatic dysplasia 2 (RHPD2), similar to Ivemark syndrome, and in three individuals with nephronophthisis (NPHP9). This is the third report of disease-causing mutations in the NEK8 gene in humans and only the second describing multi-organ involvement. The clinical features we describe differ from those in the previously published report in that (1) a pancreatic phenotype was not observed in the individuals reported here, (2) there were more prominent cardiac findings, (consistent with observations in murine models), and (3) we observed bile duct hypoplasia rather than ductal plate malformation. The patients reported here expand our understanding of the NEK8-associated phenotype. Our findings highlight the variable phenotypic expressivity and the spectrum of clinical manifestations due to mutations in the NEK8 gene.


Subject(s)
Heart Defects, Congenital/genetics , Heterozygote , Kidney Failure, Chronic/genetics , Liver Diseases/congenital , Mutation , Protein Kinases/genetics , Siblings , Abnormalities, Multiple , Exome , Heart Defects, Congenital/diagnosis , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Kidney/abnormalities , Kidney Failure, Chronic/diagnosis , Liver/abnormalities , Liver Diseases/diagnosis , Male , NIMA-Related Kinases , Pancreas/abnormalities
4.
Hum Mutat ; 36(6): 631-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25765999

ABSTRACT

Biliary atresia (BA) is a pediatric cholangiopathy with unknown etiology occurring in isolated and syndromic forms. Laterality defects affecting the cardiovascular and gastrointestinal systems are the most common features present in syndromic BA. Most cases are sporadic, although reports of familial cases have led to the hypothesis of genetic susceptibility in some patients. We identified a child with BA, malrotation, and interrupted inferior vena cava whose father presented with situs inversus, polysplenia, panhypopituitarism, and mildly dysmorphic facial features. Chromosomal microarray analysis demonstrated a 277 kb heterozygous deletion on chromosome 20, which included a single gene, FOXA2, in the proband and her father. This deletion was confirmed to be de novo in the father. The proband and her father share a common diagnosis of heterotaxy, but they also each presented with a variety of other issues. Further genetic screening revealed that the proband carried an additional protein-altering polymorphism (rs1904589; p.His165Arg) in the NODAL gene that is not present in the father, and this variant has been shown to decrease expression of the gene. As FOXA2 can be a regulator of NODAL expression, we propose that haploinsufficiency for FOXA2 combined with a decreased expression of NODAL is the likely cause for syndromic BA in this proband.


Subject(s)
Biliary Atresia/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , Heterotaxy Syndrome/genetics , Heterozygote , Hypopituitarism/genetics , Sequence Deletion , Adult , Alleles , Biliary Atresia/diagnosis , DNA Copy Number Variations , Facies , Female , Genetic Association Studies , Genotype , Heterotaxy Syndrome/diagnosis , Humans , Hypopituitarism/diagnosis , Infant , Male , Pedigree , Phenotype , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...