Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 565(7739): E7, 2019 01.
Article in English | MEDLINE | ID: mdl-30604767

ABSTRACT

In Fig. 2 of this Analysis, the tick-mark labels on the colour bars in the second and third images from the top were inadvertently swapped. In addition, the citation at the end of the sentence, "On a monthly basis GRACE can resolve TWS changes with sufficient accuracy over scales that range from approximately 200,000 km2 at low latitudes to about 90,000 km2 near the poles" should be to ref. 4 not ref. 1. These errors have been corrected online.

2.
Nature ; 557(7707): 651-659, 2018 05.
Article in English | MEDLINE | ID: mdl-29769728

ABSTRACT

Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002-2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world's water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security.


Subject(s)
Fresh Water/analysis , Water Supply/statistics & numerical data , China , Climate Change , Food Supply , Groundwater/analysis , Human Activities , Humans , Models, Theoretical
3.
Science ; 351(6274): 699-703, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26912856

ABSTRACT

Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of continental land mass changes and a quantification of this term. We found that between 2002 and 2014, climate variability resulted in an additional 3200 ± 900 gigatons of water being stored on land. This gain partially offset water losses from ice sheets, glaciers, and groundwater pumping, slowing the rate of sea level rise by 0.71 ± 0.20 millimeters per year. These findings highlight the importance of climate-driven changes in hydrology when assigning attribution to decadal changes in sea level.

4.
Science ; 349(6249): 684-5, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26273037
5.
J Biol Chem ; 273(25): 15765-72, 1998 Jun 19.
Article in English | MEDLINE | ID: mdl-9624175

ABSTRACT

PECAM-1 is an adhesion molecule expressed on hemopoietic and endothelial cells. Recently, it was observed that PECAM-1 becomes tyrosine-phosphorylated in response to a variety of physiological stimuli. Furthermore, tyrosine-phosphorylated PECAM-1 was shown to associate with SHP-2, a Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase expressed ubiquitously. In light of the significance of tyrosine protein phosphorylation as a regulatory mechanism, we wished to understand better the nature and impact of the protein-tyrosine kinases (PTKs) mediating PECAM-1 tyrosine phosphorylation. Through reconstitution experiments in COS-1 cells, we determined that mouse PECAM-1 could be tyrosine-phosphorylated by Src-related PTKs and Csk-related PTKs, but not by other kinases such as Syk, Itk, and Pyk2. Using site-directed mutagenesis and peptide phosphorylation studies, we found that these PTKs were efficient at phosphorylating Tyr-686, but not Tyr-663, of PECAM-1. Src-related enzymes also phosphorylated mouse PECAM-1 at one or more yet to be identified sites. In other studies, we demonstrated that phosphorylation of PECAM-1 by Src or Csk family kinases was sufficient to trigger its association with SHP-2. Moreover, it was able to promote binding of PECAM-1 to SHP-1, a SHP-2-related protein-tyrosine phosphatase expressed in hemopoietic cells. Taken together, these findings indicated that the Src and Csk families of kinases are strong candidates for mediating tyrosine phosphorylation of PECAM-1 and triggering its association with SH2 domain-containing phosphatases under physiological circumstances.


Subject(s)
Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Tyrosine/metabolism , src-Family Kinases/metabolism , Amino Acid Sequence , Animals , COS Cells , Intracellular Signaling Peptides and Proteins , Mice , Molecular Sequence Data , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Protein Tyrosine Phosphatases/metabolism , SH2 Domain-Containing Protein Tyrosine Phosphatases
6.
J Cell Biol ; 138(6): 1425-35, 1997 Sep 22.
Article in English | MEDLINE | ID: mdl-9298995

ABSTRACT

Platelet/endothelial cell adhesion molecule (PECAM-1) is a cell adhesion molecule of the immunoglobulin superfamily that plays a role in a number of vascular processes including leukocyte transmigration through endothelium. The presence of a specific 19- amino acid exon within the cytoplasmic domain of PECAM-1 regulates the binding specificity of the molecule; specifically, isoforms containing exon 14 mediate heterophilic cell-cell aggregation while those variants missing exon 14 mediate homophilic cell-cell aggregation. To more precisely identify the region of exon 14 responsible for ligand specificity, a series of deletion mutants were created in which smaller regions of exon 14 were removed. After transfection into L cells, they were tested for their ability to mediate aggregation. For heterophilic aggregation to occur, a conserved 5-amino acid region (VYSEI in the murine sequence or VYSEV in the human sequence) in the mid-portion of the exon was required. A final construct, in which this tyrosine was mutated into a phenylalanine, aggregated in a homophilic manner when transfected into L cells. Inhibition of phosphatase activity by exposure of cells expressing wild type or mutant forms of PECAM-1 to sodium orthovanadate resulted in high levels of cytoplasmic tyrosine phosphorylation and led to a switch from heterophilic to homophilic aggregation. Our data thus indicate either loss of this tyrosine from exon 14 or its phosphorylation results in a change in ligand specificity from heterophilic to homophilic binding. Vascular cells could thus determine whether PECAM-1 functions as a heterophilic or homophilic adhesion molecule by processes such as alternative splicing or by regulation of the balance between tyrosine phosphorylation or dephosphorylation. Defining the conditions under which these changes occur will be important in understanding the biology of PECAM-1 in transmigration, angiogenesis, development, and other processes in which this molecule plays a role.


Subject(s)
Blood Platelets/chemistry , Exons/physiology , Platelet Endothelial Cell Adhesion Molecule-1/chemistry , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Alternative Splicing/physiology , Animals , Binding Sites/physiology , Blood Platelets/metabolism , Cytoplasm/chemistry , Ligands , Mice , Mutagenesis/physiology , Phosphorylation , Protein Binding/drug effects , Protein Binding/genetics , Protein Structure, Tertiary , Sensitivity and Specificity , Tyrosine/metabolism , Vanadates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...