Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Pollut ; 336: 122437, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37634565

ABSTRACT

Particulate matter (PM) inhaled into human lungs causes oxidative stress and adverse health effects through antioxidant depletion (oxidative potential, OP). However, there is limited knowledge regarding the association between the lung-deposited dose (LDD) of PM and OP in extrathoracic (ET), tracheobronchial (TB), and pulmonary (P) regions of human lungs. Dithiothreitol (DTT) and ascorbic acid (AA) assays were employed to measure the OP of PM size fractions to investigate OP distribution in human lungs and identify the chemical drivers. Quasi-ultrafine particles (quasi-UFP, ≤0.49 µm) exhibited high OP deposition in the TB and P regions, while coarse particles (CP, ≥3.0 µm) dominated in the ET region. A plot of extrinsic (per air volume) and intrinsic (per PM mass) OP versus LDD revealed that the OP for fine and coarse particles was greatest in the ET region, whereas the OP of quasi-UFP was greatest in alveoli. The study also demonstrated that extrinsic OP and PM doses are not strongly related. The decline in OP with increasing PM dose reveals the need for further investigation of the antagonistic effects of the chemical compositions. Overall, the results presented herein help address the gap in knowledge regarding the association between the OP and LDD of ambient particles in specific regions of human lungs.

3.
Environ Pollut ; 323: 121296, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36804888

ABSTRACT

Atmospheric lead (Pb) pollution negatively affects human health and ecosystem, and extensive research is required to identify its sources and develop robust mitigation methods. In this study, the concentration and isotopic composition of Pb in fine particulate matter (PM2.5) at five sites in the China's Beijing-Tianjin-Hebei (BTH) region were analyzed. The results showed that the Pb concentration in the BTH region declined along the northwest direction in winter owing to the East Asian monsoon. Pb isotopic signatures confirmed that anthropogenic activities significantly contributed to Pb pollution, compared with natural sources. With the increasing import of foreign Pb (with a relatively lower 208Pb/206Pb ratio) to China, we hypothesized that the unique isotopic signature of Pb in Chinese aerosols may decline over time. Therefore, the application of the isotopic approach for quantifying Pb transported from China should be carefully appraised in future research to provide a realistic estimate of the contribution of local sources and the transboundary effect consistent with air mass trajectories analysis. This study provides a theoretical reference for supporting the utilization of Δ208Pb values for better clarify the transboundary impact of Pb pollution and to reduce international disputes.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Ecosystem , Environmental Monitoring/methods , Lead/analysis , Particulate Matter/analysis
4.
Sci Total Environ ; 789: 147741, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34058584

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) have gained attention because of their environmental persistence and effects on ecosystems, animals, and human health. They are mutagenic, carcinogenic, and teratogenic. The review provides background knowledge about their sources, metabolism, temporal variations, and size distribution in atmospheric particulate matter. The review article briefly discusses the analytical methods suitable for the extraction, characterization, and quantification of nonpolar and polar PAHs, addressing the challenges. Herein, we discussed the molecular diagnostic ratios (DRs), stable carbon isotopic analysis (SCIA), and receptor models, with much emphasis on the positive matrix factorization (PMF) model, for apportioning PAH sources. Among which, DRs and PCA identified as the most widely employed method, but their accuracy for PAH source identification has received global criticism. Therefore, the review recommends compound-specific isotopic analysis (CSIA) and PMF as the best alternative methods to provide detailed qualitative and quantitative source analysis. The compound-specific isotopic signatures are not affected by environmental degradation and are considered promising for apportioning PAH sources. However, isotopic fractions of co-eluted compounds like polar PAHs and aliphatic hydrocarbons make the PAHs isotopic fractions interpretation difficult. The interference of unresolved complex mixtures is a limitation to the application of CSIA for PAH source apportionment. Hence, for CSIA to further support PAH source apportionment, fast and cost-effective purification techniques with no isotopic fractionation effects are highly desirable. The present review explains the concept of stable carbon isotopic analysis (SCIA) relevant to PAH source analysis, identifying the techniques suitable for sample extract purification. We demonstrate how the source apportioned PAHs can be applied in assessing the health risk of PAHs using the incremental lifetime cancer risk (ILCR) model, and in doing so, we identify the key factors that could undermine the accuracy of the ILCR and research gaps that need further investigation.


Subject(s)
Air Pollutants , Neoplasms , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , China , Ecosystem , Environmental Monitoring , Humans , Neoplasms/chemically induced , Neoplasms/epidemiology , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...