Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 309: 119748, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35868472

ABSTRACT

For the first time, emission/deposition fluxes of volatile organic compounds (VOCs) and H2S from a historic closed landfill site in Southern Italy were determined by Eddy Covariance (EC) using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). This was done in two field campaigns of one week performed in July and October 2016, where fluxes of CO2 and CH4 were also measured. Many compounds not previously identified in the biogas were detected by PTR-TOF-MS, but only in July some of them produced positive fluxes exceeding the flux limit of detection. Methanol was the most emitted compound with an average flux of 44.20 ± 4.28 µg m-2 h-1, followed by toluene with a mean flux of 18.97 ± 2.47 µg m-2 h-1. Toluene fluxes were 10 times higher than those of benzene, fitting rather well with values previously measured in the biogas. VOCs emission fluxes of monoterpenes and highly reactive arenes did not reflect, however, the biogas composition. This, combined with tiny emissions of VOC oxidation products, suggests that landfill emissions underwent some photochemical degradation before being dispersed in the atmospheric boundary layer (ABL). Deposition fluxes of some VOCs emitted from the sea was also observed in July. No relevant VOC fluxes were instead measured in October, suggesting that temperature was the variable controlling most landfill emission. Albeit small, summer landfill emissions from the investigated site can have an impact on the population living nearby, because they contain or still generate compounds that causing nuisance.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Biofuels/analysis , Environmental Monitoring/methods , Seasons , Toluene/analysis , Volatile Organic Compounds/analysis , Waste Disposal Facilities
2.
Sci Total Environ ; 640-641: 377-386, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29864655

ABSTRACT

The composition in Volatile Organic Compounds (VOC) of the biogas produced by seven landfills of Giugliano (Naples, Campania, Italy) was determined and VOC emission rates assessed to verify if these compounds represent a potential threat to the population living nearby. VOC composition in the biogas could not be predicted, as heterogeneous waste was dumped from the late 1980s to the early 2000s and then underwent biological degradation. No data are available on the amount and composition of VOC in the biogas before the landfills closure as no operational biogas collection system was present. In this study, VOC composition was determined by gas chromatography-mass spectrometry (GC-MS), after collecting samples from collection pipes and from soil fractures in cover soil or capping. Individual VOC were quantified and data compared with those collected at two landfills in Latium, when they were still in operation. Relevant differences were observed, mainly due to waste aging, but no specific VOC revealing toxic waste dumping was found, although the concurrent presence of certain compounds suggested that dumping of industrial wastes might have occurred. The average VOC emission was assessed and a dispersion model was run to find out if the emitted plume could affect the health of population. The results suggested that fugitive emissions did not represent a serious danger, since the concentrations simulated at the neighboring cities were below the threshold limits for acute and chronic diseases. However, VOC plume could cause annoyance at night when the steady state conditions of the atmosphere enhance pollutants accumulation in the lower layers. In addition, some of the emitted VOC, such as alkylbenzenes and monoterpenes, can contribute to tropospheric ozone formation.


Subject(s)
Air Pollutants/analysis , Refuse Disposal/methods , Volatile Organic Compounds/analysis , Biofuels , Environmental Monitoring , Italy , Refuse Disposal/statistics & numerical data , Waste Disposal Facilities
3.
Environ Sci Technol ; 42(6): 2041-6, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18409634

ABSTRACT

An intercomparison was made between eddy covariance flux measurements of ammonia by a quantum cascade laser absorption spectrometer (QCLAS) and a lead-salt tunable diode laser absorption spectrometer (TDLAS). The measurements took place in September 2004 and again in April 2005 over a managed grassland site in Southern Scotland, U.K. These were also compared with a flux estimate derived from an "Ammonia Measurement by ANnular Denuder with online Analysis" (AMANDA), using the aerodynamic gradient method (AGM). The concentration and flux measurements from the QCLAS correlated well with those of the TDLAS and the AGM systems when emissions were high, following slurry application to the field. Both the QCLAS and TDLAS, however, underestimated the flux when compared with the AMANDA system, by 64%. A flux loss of 41% due to chemical reaction of ammonia in the QCLAS (and 37% in the TDLAS) sample tube walls was identified and characterized using laboratory tests but did not fully accountforthis difference. Recognizing these uncertainties, the agreement between the systems was nevertheless very close (R2 = 0.95 between the QCLAS and the TDLAS; R2 = 0.84 between the QCLAS and the AMANDA) demonstrating the suitability of the laser absorption methods for quantifying the temporal dynamics of ammonia fluxes.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Environmental Monitoring , Lasers , Scotland , Spectrum Analysis/methods
4.
Environ Pollut ; 144(3): 941-50, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16584821

ABSTRACT

Tissue N content of mosses, which has been shown to be an indicator of enhanced N, was studied at a range of locations dominated either by wet or dry deposited and oxidised and reduced forms of N. Tissue N responded differently to wet and dry deposited N. For a 1 kg ha(-1) y(-1) increase in N deposition, tissue N increased by 0.01% at wet deposition sites but by 0.03% at sites dominated by dry deposited NH3. Tissue N at wet deposition sites responded more to concentrations of NO3- and NH4+ in precipitation (r(2) 0.63) than to total N deposition (r(2) 0.27), concentration explaining 66% of the variation in tissue N, wet deposition 33%. The study clearly concludes that tissue N concentration in mosses provides a good indication of N deposition at sites where deposition is dominated by NH3, and is also valuable in identifying vegetation exposed to large concentrations of NH4+ or NO3-, in wet deposition dominated areas, such as hilltops and wind exposed woodland edges.


Subject(s)
Air Pollutants/analysis , Bryophyta/chemistry , Environmental Monitoring/methods , Nitrogen/analysis , Acid Rain , Agriculture , Air Movements , Animal Husbandry , Geographic Information Systems , Trees , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...