Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(2): e11052, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38414570

ABSTRACT

Exploring how interactions between species evenness and dominant species identity affect litter decomposition processes is vital to understanding the relationship between biodiversity and ecosystem functioning in the context of global changes. We carried out a 127-day litter decomposition experiment under controlled conditions, with interactions of four species evenness types (high, medium, low and single species) and three dominant species identity (Leymus chinensis, Serratula centauroides, Artemisia capillaris). After collecting the remaining litter, we estimated how evenness and dominant species identity affected litter mass loss rate, carbon (C) loss rate, nitrogen (N) loss rate and remaining litter C/N directly or indirectly, and assessed relative mixture effects (RMEs) on litter mass loss. The main results are shown as follows. (1) By generalized linear models, litter mass loss rate was significantly affected by evenness after 69-day decomposition; N loss rate was affected by dominant species identity after 69-day decomposition, with treatment dominated by Serratula centauroides being at least 9.26% higher than that dominated by any of other species; and remaining litter C/N was affected by the interactions between evenness and dominant species identity after 30-, 69- and 127-day decomposition. (2) Twenty-three out of 27 RMEs were additive, and dominant species identity showed a significant effect on RMEs after 127-day decomposition. (3) By confirmatory path analyses, litter mass loss rate was affected by dominant species identity directly after 127-day decomposition, and by both species evenness and dominant species identity indirectly which was mediated by initial litter functional dispersion (FDis) after 30- and 69-day decomposition; remaining litter C/N was affected by evenness indirectly which was mediated by initial litter FDis after 127-day decomposition. These findings highlight the importance of evenness and dominant species identity on litter decomposition. The study provides insights into communities during retrogressive successions in semi-arid grasslands in the context of global changes.

2.
Ecol Evol ; 13(9)2023 Sep.
Article in English | MEDLINE | ID: mdl-37664491

ABSTRACT

Understanding patterns of intraspecific trait variation can help us understand plant adaptability to environmental changes. To explore the underlying adaptation mechanisms of zonal plant species, we selected seven populations of Stipa krylovii, a dominant species in the Inner Mongolia Steppe of China, and evaluated the effects of phenotypic plasticity and genetic differentiation, the effects of climate variables on population trait differentiation, and traits coordinated patterns under each soil moisture treatment. We selected seeds from seven populations of S. krylovii in the Inner Mongolia Steppe, China, and carried out a soil moisture (2) × population origin (7) common garden experiment at Tianjin City, China, and measured ten plant traits of S. krylovii. General linear analyses were used to analyze how soil moisture and population origin affected each trait variation, Mantel tests were used to analyze population trait differentiation-geographic distance (or climatic difference) relationships, regression analyses were used to evaluate trait-climatic variable relationships, and plant trait networks (PTNs) were used to evaluate traits coordinated patterns. Both soil moisture and population origin showed significant effects on most of traits. Aboveground biomass, root-shoot ratio, leaf width, specific leaf area, and leaf nitrogen (N) content were significantly correlated with climate variables under the control condition. Specific leaf area and leaf N content were significantly correlated with climate variables under the drought condition. By PTNs, the hub trait(s) was plant height under the control condition and were aboveground biomass, root length, and specific leaf area under the drought condition. This study indicates that both phenotypic plasticity and genetic differentiation can significantly affect the adaptability of S. krylovii. In addition, soil moisture treatments show significant effects on trait-climate relationships and traits coordinated patterns. These findings provide new insights into the adaptive mechanisms of zonal species in the semiarid grassland region.

3.
Sci Total Environ ; 826: 154134, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35219658

ABSTRACT

Biodiversity changes in terrestrial communities continue in the context of global changes. However, the interactive effects of the changes in diversity at inter- and intraspecific levels as well as cascading effects from plant to soil microorganisms on ecosystem functioning under climate changes remains largely unexplored. Using grassland species in the semi-arid Inner Mongolia Steppe, we conducted a microcosm experiment to assess how drought treatment (non-drought and drought conditions), species diversity (2, 4, and 7 species) and genotypic diversity of the dominant species Leymus chinensis (1, 3, and 6 genotypes) affected ecosystem functions directly or indirectly via regulating plant community functional structure [community-weighted mean (CWM) and functional dispersion (FDis)] and soil microbial diversity (Shannon-Wiener index). Drought treatment, species and genotypic diversity significantly and interactively affected soil N, P cycle and soil multifunctionality as well as soil microbial diversity. Drought treatment significantly affected biomass, soil C cycle, CWM and soil microbial diversity. Species diversity significantly affected soil N cycle, CWM and FDis, and genotypic diversity significantly affected all soil functions and soil microbial diversity. CWM regulated the responses of all ecosystem functions except soil N cycle to the changes in soil moisture and species diversity, which supports the mass ratio hypothesis. The cascading effect from genotypic diversity to soil microbial diversity was significant on belowground biomass but not on any of the other ecosystem functions observed in this study. These findings highlight the importance of genotypic diversity of the dominant species L. chinensis in affecting belowground ecosystem functioning as well as soil microbial diversity, which should not be ignored for grassland protection and management. This study provides further insights into biodiversity and ecosystem functioning mechanisms in semi-arid grasslands in the context of global climate changes.


Subject(s)
Ecosystem , Grassland , Biodiversity , Biomass , China , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...