Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(10): 7870-7890, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38739840

ABSTRACT

Activation of AMP-activated protein kinase (AMPK) is proposed to alleviate hyperlipidemia. With cordycepin and N6-(2-hydroxyethyl) adenosine (HEA) as lead compounds, a series of adenosine-based derivatives were designed, synthesized, and evaluated on activation of AMPK. Finally, compound V1 was identified as a potent AMPK activator with the lipid-lowering effect. Molecular docking and circular dichroism indicated that V1 exerted its activity by binding to the γ subunit of AMPK. V1 markedly decreased the serum low-density lipoprotein cholesterol levels in C57BL/6 mice, golden hamsters, and rhesus monkeys. V1 was selected as the clinical compound and concluded Phase 1 clinical trials. A single dose of V1 (2000 mg) increased AMPK activation in human erythrocytes after 5 and 12 h of treatment. RNA sequencing data suggested that V1 downregulated expression of genes involved in regulation of apoptotic process, lipid metabolism, endoplasmic reticulum stress, and inflammatory response in liver by activating AMPK.


Subject(s)
AMP-Activated Protein Kinases , Hyperlipidemias , Mice, Inbred C57BL , Animals , AMP-Activated Protein Kinases/metabolism , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Humans , Mice , Male , Macaca mulatta , Molecular Docking Simulation , Administration, Oral , Mesocricetus , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/chemical synthesis , Hypolipidemic Agents/therapeutic use , Drug Discovery , Structure-Activity Relationship , Cricetinae
2.
Glia ; 71(9): 2196-2209, 2023 09.
Article in English | MEDLINE | ID: mdl-37178056

ABSTRACT

Schwann cells (SCs) form myelin and provide metabolic support for axons, and are essential for normal nerve function. Identification of key molecules specific to SCs and nerve fibers may provide new therapeutic targets for diabetic peripheral neuropathy (DPN). Argonaute2 (Ago2) is a key molecular player that mediates the activity of miRNA-guided mRNA cleavage and miRNA stability. Our study found that Ago2 knockout (Ago2-KO) in proteolipid protein (PLP) lineage SCs in mice resulted in a significant reduction of nerve conduction velocities and impairments of thermal and mechanical sensitivities. Histopathological data revealed that Ago2-KO significantly induced demyelination and neurodegeneration. When DPN was induced in both wild-type and Ago2-KO mice, Ago2-KO mice exhibited further decreased myelin thickness and exacerbated neurological outcomes compared with wild-type mice. Deep sequencing analysis of Ago2 immunoprecipitated complexes showed that deregulated miR-206 in Ago2-KO mice is highly related to mitochondrial function. In vitro data showed that knockdown of miR-200 induced mitochondrial dysfunction and apoptosis in SCs. Together, our data suggest that Ago2 in SCs is essential to maintain peripheral nerve function while ablation of Ago2 in SCs exacerbates SC dysfunction and neuronal degeneration in DPN. These findings provide new insight into the molecular mechanisms of DPN.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , MicroRNAs , Mice , Animals , Diabetic Neuropathies/genetics , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/pathology , Schwann Cells/metabolism , Myelin Sheath/metabolism , Axons/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology
3.
Front Aging Neurosci ; 14: 926485, 2022.
Article in English | MEDLINE | ID: mdl-35912073

ABSTRACT

Small extracellular vesicles (sEVs) mediate cell-cell communication by transferring their cargo biological materials into recipient cells. Diabetes mellitus (DM) induces cerebral vascular dysfunction and neurogenesis impairment, which are associated with cognitive decline and an increased risk of developing dementia. Whether the sEVs are involved in DM-induced cerebral vascular disease, is unknown. Therefore, we studied sEVs derived from cerebral endothelial cells (CEC-sEVs) of aged DM rats (DM-CEC-sEVs) and found that DM-CEC-sEVs robustly inhibited neural stem cell (NSC) generation of new neuroblasts and damaged cerebral endothelial function. Treatment of aged DM-rats with CEC-sEVs derived from adult healthy normal rats (N-CEC-sEVs) ameliorated cognitive deficits and improved cerebral vascular function and enhanced neurogenesis. Intravenously administered N-CEC-sEVs crossed the blood brain barrier and were internalized by neural stem cells in the neurogenic region, which were associated with augmentation of miR-1 and -146a and reduction of myeloid differentiation primary response gene 88 and thrombospondin 1 proteins. In addition, uptake of N-CEC-sEVs by the recipient cells was mediated by clathrin and caveolin dependent endocytosis signaling pathways. The present study provides ex vivo and in vivo evidence that DM-CEC-sEVs induce cerebral vascular dysfunction and neurogenesis impairment and that N-CEC-sEVs have a therapeutic effect on improvement of cognitive function by ameliorating dysfunction of cerebral vessels and increasing neurogenesis in aged DM rats, respectively.

4.
Exp Neurol ; 341: 113694, 2021 07.
Article in English | MEDLINE | ID: mdl-33727097

ABSTRACT

Diabetic peripheral neuropathy (DPN) is one of the most prevalent chronic complications of diabetes mellitus with no effective treatment. We recently demonstrated that mesenchymal stromal cell (MSC)-derived exosomes (exo-naïve) alleviate neurovascular dysfunction and improve functional recovery. MicroRNA (miRNA), one of the exosomal cargos, downregulates inflammation-related genes, resulting in suppression of pro-inflammatory gene activation. In the present study, we developed engineered MSC-exosomes loaded with miR-146a (exo-146a) and compared the therapeutic effects of exo-146a with exo-naïve in diabetic (db/db) mice with DPN. Exo-146a possesses a high loading capacity, robust ability to accumulate in peripheral nerve tissues upon systemic administration, and evokes substantially enhanced therapeutic efficacy on neurological recovery compared with exo-naïve. Treatment of DPN in diabetic mice with exo-146a for two weeks significantly increased and decreased nerve conduction velocity, and thermal and mechanical stimuli threshold, respectively, whereas it took four weeks of exo-naive treatment to achieve these improvements. Compared with exo-naïve, exo-146a significantly suppressed the peripheral blood inflammatory monocytes and the activation of endothelial cells via inhibiting Toll-like receptor (TLR)-4/NF-κB signaling pathway. These data provide a proof-of-concept about both the feasibility and efficacy of the exosome-based gene therapy for DPN. The translation of this approach to the clinic has the potential to improve the prospects for people who suffer from DPN.


Subject(s)
Diabetes Mellitus, Experimental/therapy , Diabetic Neuropathies/therapy , Exosomes/transplantation , Mesenchymal Stem Cell Transplantation/methods , MicroRNAs/administration & dosage , Tissue Engineering/methods , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/genetics , Diabetic Neuropathies/metabolism , Exosomes/genetics , Exosomes/metabolism , Genetic Therapy/methods , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Treatment Outcome
5.
Front Neurol ; 11: 558758, 2020.
Article in English | MEDLINE | ID: mdl-33192992

ABSTRACT

Diabetic neuropathy (DN) is the most prevalent chronic complication of diabetes mellitus. The exact pathophysiological mechanisms of DN are unclear; however, communication network dysfunction among axons, Schwann cells, and the microvascular endothelium likely play an important role in the development of DN. Mounting evidence suggests that microRNAs (miRNAs) act as messengers that facilitate intercellular communication and may contribute to the pathogenesis of DN. Deregulation of miRNAs is among the initial molecular alterations observed in diabetics. As such, miRNAs hold promise as biomarkers and therapeutic targets. In preclinical studies, miRNA-based treatment of DN has shown evidence of therapeutic potential. But this therapy has been hampered by miRNA instability, targeting specificity, and potential toxicities. Recent findings reveal that when packaged within extracellular vesicles, miRNAs are resistant to degradation, and their delivery efficiency and therapeutic potential is markedly enhanced. Here, we review the latest research progress on the roles of miRNAs as biomarkers and as potential clinical therapeutic targets in DN. We also discuss the promise of exosomal miRNAs as therapeutics and provide recommendations for future research on miRNA-based medicine.

6.
Int J Mol Sci ; 21(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867041

ABSTRACT

Stroke remains the leading cause of adult disability. Post-stroke neurogenesis contributes to functional recovery. As an intrinsic neurorestorative process, it is important to elucidate the molecular mechanism underlying stroke-induced neurogenesis and to develop therapies designed specifically to augment neurogenesis. Epigenetic mechanisms include DNA methylation, histone modification and its mediation by microRNAs and long-non-coding RNAs. In this review, we highlight how epigenetic factors including DNA methylation, histone modification, microRNAs and long-non-coding RNAs mediate stroke-induced neurogenesis including neural stem cell self-renewal and cell fate determination. We also summarize therapies targeting these mechanisms in the treatment of stroke.


Subject(s)
Epigenesis, Genetic , Neural Stem Cells/cytology , Stroke/genetics , Cell Differentiation , Cell Self Renewal , DNA Methylation , Histone Code , Humans , MicroRNAs/genetics , Neurogenesis , RNA, Long Noncoding/genetics
7.
Stem Cells ; 38(8): 973-985, 2020 08.
Article in English | MEDLINE | ID: mdl-32346940

ABSTRACT

Neurogenesis contributes to poststroke recovery. Long noncoding RNAs (lncRNAs) participate in the regulation of stem cell self-renewal and differentiation. However, the role of lncRNAs in stroke-induced neurogenesis remains unknown. In this study, we found that H19 was the most highly upregulated lncRNA in neural stem cells (NSCs) of the subventricular zone (SVZ) of rats subjected to focal cerebral ischemia. Deletion of H19 suppressed cell proliferation, promoted cell death, and blocked NSC differentiation. RNA sequencing analysis revealed that genes deregulated by H19 knockdown were those that are involved in transcription, apoptosis, proliferation, cell cycle, and response to hypoxia. H19 knockdown significantly increased the transcription of cell cycle-related genes including p27, whereas overexpression of H19 substantially reduced expression of these genes through the interaction with chromatin remodeling proteins EZH2 and SUZ12. Moreover, H19 regulated neurogenesis-related miRNAs. Inactivation of H19 in NSCs of ischemic rats attenuated spontaneous functional recovery after stroke. Collectively, our data provide novel insights into the epigenetic regulation of lncRNAs in stroke-induced neurogenesis.


Subject(s)
Neurogenesis/genetics , RNA, Long Noncoding/genetics , Stroke/genetics , Stroke/pathology , Animals , Cell Differentiation/physiology , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Male , MicroRNAs , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurons/metabolism , Neurons/pathology , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Stroke/metabolism , Up-Regulation
8.
Diabetologia ; 63(2): 431-443, 2020 02.
Article in English | MEDLINE | ID: mdl-31740984

ABSTRACT

AIMS/HYPOTHESIS: Diabetic peripheral neuropathy (DPN) is one of the major complications of diabetes, which contributes greatly to morbidity and mortality. There is currently no effective treatment for this disease. Exosomes are cell-derived nanovesicles and play an important role in intercellular communications. The present study investigated whether mesenchymal stromal cell (MSC)-derived exosomes improve neurological outcomes of DPN. METHODS: Exosomes were isolated from the medium of cultured mouse MSCs by ultracentrifugation. Diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at the age of 20 weeks were used as DPN models. Heterozygous mice (db/m) of the same age were used as the control. MSC-exosomes were administered weekly via the tail vein for 8 weeks. Neurological function was evaluated by testing motor and sensory nerve conduction velocities, and thermal and mechanical sensitivity. Morphometric analysis was performed by myelin sheath staining and immunohistochemistry. Macrophage markers and circulating cytokines were measured by western blot and ELISA. MicroRNA (miRNA) array and bioinformatics analyses were performed to examine the exosomal miRNA profile and miRNA putative target genes involved in DPN. RESULTS: Treatment of DPN with MSC-exosomes markedly decreased the threshold for thermal and mechanical stimuli and increased nerve conduction velocity in diabetic mice. Histopathological analysis showed that MSC-exosomes markedly augmented the density of FITC-dextran perfused blood vessels and increased the number of intraepidermal nerve fibres (IENFs), myelin thickness and axonal diameters of sciatic nerves. Western blot analysis revealed that MSC-exosome treatment decreased and increased M1 and M2 macrophage phenotype markers, respectively. Moreover, MSC-exosomes substantially suppressed proinflammatory cytokines. Bioinformatics analysis revealed that MSC-exosomes contained abundant miRNAs that target the Toll-like receptor (TLR)4/NF-κB signalling pathway. CONCLUSIONS/INTERPRETATION: MSC-derived exosomes alleviate neurovascular dysfunction and improve functional recovery in mice with DPN by suppression of proinflammatory genes.


Subject(s)
Diabetic Neuropathies/metabolism , Exosomes/metabolism , Mesenchymal Stem Cells/cytology , Animals , Cells, Cultured , Diabetes Mellitus, Experimental , Disease Models, Animal , Immunohistochemistry , Macrophages/cytology , Macrophages/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mice , MicroRNAs/metabolism , Sciatic Nerve/physiology , Vasa Nervorum/cytology , Vasa Nervorum/metabolism
9.
Nanomaterials (Basel) ; 9(8)2019 Aug 03.
Article in English | MEDLINE | ID: mdl-31382577

ABSTRACT

Suppressing charge recombination and improving carrier transport are key challenges for the enhancement of photocatalytic activity of heterostructured photocatalysts. Here, we report a ferroelectric polarization-enhanced photocatalysis on the basis of BaTiO3-TiO2 core-shell heterostructures synthesized via a hydrothermal process. With an optimal weight ratio of BaTiO3 to TiO2, the heterostructures exhibited the maximum photocatalytic performance of 1.8 times higher than pure TiO2 nanoparticles. The enhanced photocatalytic activity is attributed to the promotion of charge separation and transport based on the internal electric field originating from the spontaneous polarization of ferroelectric BaTiO3. High stability of polarization-enhanced photocatalysis is also confirmed from the BaTiO3-TiO2 core-shell heterostructures. This study provides evidence that ferroelectric polarization holds great promise for improving the performance of heterostructured photocatalysts.

10.
Stroke ; 50(9): 2547-2554, 2019 09.
Article in English | MEDLINE | ID: mdl-31387512

ABSTRACT

Background and Purpose- Stroke is a leading cause of disability worldwide, mainly affecting the elderly. However, preclinical studies in aged ischemic animals are limited. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a naturally occurring tetrapeptide with vascular-protective properties. The present study investigated the effect of AcSDKP on tPA (tissue-type plasminogen activator)-induced thrombolysis in aged rats after ischemic stroke. Methods- Aged male rats (18 months) were subjected to embolic middle cerebral artery occlusion. Rats subjected to 4 hours of middle cerebral artery occlusion were randomized into the following groups: (1) AcSDKP; (2) tPA; (3) AcSDKP in combination with tPA; and (4) saline. Neurological deficits, cerebral microvascular patency and integrity, and infarction were examined at 1 day and 7 days after middle cerebral artery occlusion. In vitro experiments were performed to examine the effect of AcSDKP on aged cerebral endothelial cell permeability. Results- Compared with saline, AcSDKP, or tPA as monotherapy did not have any therapeutic effects, whereas AcSDKP in combination with tPA significantly reduced cerebral tissue infarction and improved neurological outcome without increasing cerebral hemorrhage. Concurrently, the combination treatment significantly augmented microvascular perfusion and reduced thrombosis and blood-brain barrier leakage. In vitro, compared with cerebral endothelial cells from ischemic adult rats, the endothelial cells from ischemic aged rats exhibited significantly increased leakage. AcSDKP suppressed tPA-induced aged endothelial cell leakage and reduced expression of ICAM-1 (intercellular adhesion molecule 1) and NF (nuclear factor)-κB. Conclusions- The present study provides evidence for the therapeutic efficacy of AcSDKP in combination tPA for the treatment of embolic stroke in aged rats at 4 hours after stroke onset. AcSDKP likely acts on cerebral endothelial cells to enhance the benefits of tPA by increasing tissue perfusion and augmenting the integrity of the blood-brain barrier. Visual Overview- An online visual overview is available for this article.


Subject(s)
Endothelial Cells/drug effects , Stroke/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/therapeutic use , Aging/drug effects , Animals , Cerebral Hemorrhage/drug therapy , Disease Models, Animal , Endothelial Cells/metabolism , Fibrinolysis/drug effects , Fibrinolytic Agents/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Male , Neuroprotective Agents/pharmacology , Rats, Wistar , Thrombolytic Therapy/methods
11.
FASEB J ; 33(4): 5257-5267, 2019 04.
Article in English | MEDLINE | ID: mdl-30668139

ABSTRACT

Impairment of adult neurogenesis in the hippocampus causes cognitive deficits; however, the underlying molecular mechanisms have not been fully elucidated. microRNAs (miRNAs) regulate neural stem cell (NSC) function. With the use of a transgenic mouse line with conditional ablation of the miR-17-92 cluster in nestin lineage NSCs, we tested the hypothesis that the miR-17-92 cluster regulates adult neurogenesis and cognitive function in vivo. Compared with wild-type mice, ablation of the miR-17-92 cluster significantly reduced the number of proliferating NSCs and neuroblasts and neuronal differentiation in the dentate gyrus (DG) of the hippocampus and significantly impaired hippocampal-dependent learning and memory, as assayed by social recognition memory, novel object recognition, and Morris water-maze tests. Statistical analysis showed a highly significant correlation between newly generated neuroblasts in the DG and cognition deficits in miR-17-92 knockout (KO) mice. Western blot analysis showed that conditional KO of the miR-17-92 cluster significantly increased and reduced a cytoskeleton-associated protein, Enigma homolog 1 (ENH1), and its downstream transcription factor, inhibitor of differentiation 1 (ID1), respectively, as well as increased phosphatase and tensin homolog gene. These proteins are related to neuronal differentiation. Our study demonstrates that the miR-17-92 cluster in NSCs is critical for cognitive and behavioral function and regulates neurogenesis and that the miR-17-92 cluster may target ENH1/ID1 signaling.-Pan, W. L., Chopp, M., Fan, B., Zhang, R., Wang, X., Hu, J., Zhang, X. M., Zhang, Z. G., Liu, X. S. Ablation of the microRNA-17-92 cluster in neural stem cells diminishes adult hippocampal neurogenesis and cognitive function.


Subject(s)
Hippocampus/cytology , MicroRNAs/metabolism , Neural Stem Cells/metabolism , Neurogenesis/physiology , Animals , Blotting, Western , Cells, Cultured , Cognition/drug effects , Cognition/physiology , Electrophoresis, Polyacrylamide Gel , Electroporation , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Immunohistochemistry , Male , Maze Learning , Mice , Mice, Knockout , MicroRNAs/genetics , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurogenesis/genetics , RNA, Small Interfering/genetics , Tamoxifen/pharmacology
12.
Front Neurosci ; 12: 795, 2018.
Article in English | MEDLINE | ID: mdl-30429771

ABSTRACT

Cognition impairment and peripheral neuropathy (DPN) are two major complications of diabetes. The aim of the present study is to investigate the effect of sex differences on cognition and DPN in diabetic mice. Male and female BKS.Cg-m+/+Leprdb/J (db/db) and db/m mice were used. At ages of 20 and 30 weeks, all animals were subjected to learning, memory and neurological function tests. Regional blood flow in footpad and sciatic nerves were measured using laser Doppler flowmetry. Our data showed that male db/db mice aged 20 weeks and 30 weeks spent significantly more time to locate the hidden platform in the correct quadrant and spent significantly less time exploring the cage with a new stranger mouse compared to aged-matched female db/db mice. Electrophysiological recordings showed that male db mice aged 30 weeks had significantly reduced motor and sensory nerve conduction velocity compared with females. Hot plate and tactile allodynia tests revealed that males exhibited significantly higher thermal and mechanical latency than females. Male db mice aged 30 weeks displayed significantly reduced blood perfusion in sciatic nerve and footpad tissues compared with females. In addition, compared with male and female non-diabetic db/m mice, db/db mice exhibited increased time spent on locating the hidden platform, decreased time spent on exploring the novel odor bead and an unfamiliar mouse, as well as showed significantly lower levels of blood flow, lower velocity of MCV and SCV, higher thermal and mechanical latencies. Blood glucose levels and body weight were not significantly different between male and female diabetic animals (age 30 weeks), but male db mice showed a higher serum total cholesterol content. Together, our data suggest that males develop a greater extent of diabetes-induced cognition deficits and peripheral neurovascular dysfunction than females.

13.
Diabetes ; 66(12): 3111-3121, 2017 12.
Article in English | MEDLINE | ID: mdl-28899883

ABSTRACT

MicroRNA-146a (miR-146a) regulates multiple immune diseases. However, the role of miR-146a in diabetic peripheral neuropathy (DPN) has not been investigated. We found that mice (db/db) with type 2 diabetes exhibited substantial downregulation of miR-146a in sciatic nerve tissue. Systemic administration of miR-146a mimics to diabetic mice elevated miR-146a levels in plasma and sciatic nerve tissue and substantially increased motor and sensory nerve conduction velocities by 29 and 11%, respectively, and regional blood flow by 50% in sciatic nerve tissue. Treatment with miR-146a mimics also considerably decreased the response in db/db mice to thermal stimuli thresholds. Histopathological analysis showed that miR-146a mimics markedly augmented the density of fluorescein isothiocyanate-dextran-perfused blood vessels and increased the number of intraepidermal nerve fibers, myelin thickness, and axonal diameters of sciatic nerves. In addition, miR-146a treatment reduced and increased classically and alternatively activated macrophage phenotype markers, respectively. Analysis of miRNA target array revealed that miR-146a mimics greatly suppressed expression of many proinflammatory genes and downstream related cytokines. Collectively, our data indicate that treatment of diabetic mice with miR-146a mimics robustly reduces DPN and that suppression of hyperglycemia-induced proinflammatory genes by miR-146a mimics may underlie its therapeutic effect.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/prevention & control , MicroRNAs/physiology , Animals , Cytokines/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , Macrophage Activation , Male , Mice , Myelin Sheath/physiology , NF-kappa B/physiology , Regional Blood Flow , Sciatic Nerve/blood supply , Sciatic Nerve/physiology , TNF Receptor-Associated Factor 6/genetics
14.
J Lipid Res ; 56(5): 986-97, 2015 May.
Article in English | MEDLINE | ID: mdl-25761370

ABSTRACT

ABCA1 plays a key role in the initial lipidation of apoA-I, which generates circulating HDL cholesterol. Whereas it is known that the transcriptional upregulation of ABCA1 promotes HDL formation and reverse cholesterol transport (RCT), it is not known how the inhibition of ABCA1 protein degradation impacts HDL function. Employing the small molecule triacetyl-3-hydroxyphenyladenosine (IMM-H007), we determined how the attenuation of ABCA1 protein degradation affects HDL cholesterol efflux capacity, RCT, and atherosclerotic lesion formation. Pulse-chase analysis revealed that IMM-H007 inhibits ABCA1 degradation and facilitates its cell-surface localization in macrophages, and additional studies in macrophages showed that IMM-H007 thereby promotes cholesterol efflux. IMM-H007 treatment of Paigen diet-fed mice caused an increase in circulating HDL level, it increased the cholesterol efflux capacity of HDL, and it enhanced in vivo RCT from macrophages to the plasma, liver, and feces. Furthermore, ABCA1 degradation suppression by IMM-H007 reduced atherosclerotic plaque formation in apoE(-/-) mice. Thus, via effects on both ABCA1-expressing cells and circulating HDL function, the inhibition of ABCA1 protein degradation by IMM-H007 promotes HDL cholesterol efflux capacity and RCT and attenuates atherogenesis. IMM-H007 potentially represents a lead compound for the development of agents to augment HDL function.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Adenosine/analogs & derivatives , Atherosclerosis/drug therapy , Cholesterol, HDL/metabolism , ATP Binding Cassette Transporter 1/genetics , Adenosine/pharmacology , Animals , Atherosclerosis/metabolism , Cell Line , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Protein Transport/drug effects , Proteolysis , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Chin Med J (Engl) ; 127(7): 1284-8, 2014.
Article in English | MEDLINE | ID: mdl-24709181

ABSTRACT

BACKGROUND: Currently there is a trend towards reducing radiation dose while maintaining image quality during computer tomography (CT) examination. This results from the concerns about radiation exposure from CT and the potential increase in the incidence of radiation induced carcinogenesis. This study aimed to investigate the lowest radiation dose for maintaining good image quality in adult chest scanning using GE CT equipment. METHODS: Seventy-two adult patients were examined by Gemstone Spectral CT. They were randomly divided into six groups. We set up a different value of noise index (NI) when evaluating each group every other number from 13.0 to 23.0. The original images were acquired with a slice of 5 mm thickness. For each group, several image series were reconstructed using different levels of adaptive statistical iterative reconstruction (ASIR) (30%, 50%, and 70%). We got a total of 18 image sequences of different combinations of NI and ASIR percentage. On one hand, quantitative indicators, such as CT value and standard deviation (SD), were assessed at the region of interest. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The volume CT dose index (CTDI) and dose length product (DLP) were recorded. On the other hand, two radiologists with ≥ 5 years of experience blindly reviewed the subjective image quality using the standards we had previously set. RESULTS: The different combinations of noise index and ASIR were assessed. There was no significant difference in CT values among the 18 image sequences. The SD value was reduced with the noise index's reduction or ASIR's increase. There was a trend towards gradually lower SNR and CNR with an NI increase. The CTDI and DLP were diminishing as the NI increased. The scores from subjective image quality evaluation were reduced in all groups as the ASIR increased. CONCLUSIONS: Increasing NI can reduce radiation dose. With the premise of maintaining the same image quality, using a suitable percentage of ASIR can increase the value of NI. To assure image quality, we concluded that when the NI was set at 17.0 and ASIR was 50%, the image quality could be optimal for not only satisfying the requirements of clinical diagnosis, but also achieving the purpose of low-dose scanning.


Subject(s)
Radiation Dosage , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Algorithms , Female , Humans , Male , Middle Aged
16.
Yao Xue Xue Bao ; 47(12): 1640-5, 2012 Dec.
Article in Chinese | MEDLINE | ID: mdl-23460970

ABSTRACT

The goal of treatment of metabolic syndrome is the prevention of diabetes and cardiovascular events. A series of novel tetrahydrocoptisine quaternary ammonium compounds were prepared to evaluate their action of hypoglycemia and hypolipidemia for finding the therapeutic agents of metabolic syndrome. Starting from the coptisine hydrochloride (2), fifteen target compounds were synthesized by reduction and substitution of the 7-N position. All of the target compounds were characterized by 1H NMR and HR-MS. Their hypoglycemic activities were evaluated in HepG2 cell and hypolipidemic activities of compounds with better hypoglycemic activity were tested further in vivo. Results indicated that compounds 5, 7, 8 and 9 exhibited better hypoglycemic activities in vitro and compounds 5 and 8 exhibited good hypolipidemic activities in high-fat-diet (HFD) induced hyperlipidemia mice and (or) hamsters. However, the activity is not as good as simvastatin.


Subject(s)
Berberine Alkaloids/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Hypolipidemic Agents/chemical synthesis , Quaternary Ammonium Compounds/chemical synthesis , Animals , Berberine Alkaloids/chemistry , Berberine Alkaloids/pharmacology , Cholesterol/blood , Glucose/metabolism , Hep G2 Cells , Humans , Hyperlipidemias/blood , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , Mesocricetus , Mice , Molecular Structure , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Structure-Activity Relationship , Triglycerides/blood
17.
Chem Phys Lipids ; 165(2): 133-41, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22155352

ABSTRACT

A simple and sensitive method to determine lipoprotein and lipids profiles in micro-liter scale individual serum sample is not presently available. Traditional lipoprotein separation techniques either by ultra-centrifugation or by liquid chromatography methods have their disadvantages in both lipoprotein separation and lipids component quantification. In this study we used small volume needing size-exclusion fast protein liquid chromatography to separate different lipoprotein subclasses in 50µL serum. And lipids contents, such as cholesterol, cholesterol ester and triacylglycerol, were measured by using two different fluorescence-based lipid detection methods. With this method, very low density lipoprotein, low density lipoprotein and high density lipoprotein could be easily separated, and follow-up lipid detection was completed by simple kinds of reactions. Serum lipoprotein and lipids profiling from C57BL/6 mice (n=5) and human (n=5) were analyzed. The elution profiles of five individuals were highly reproducible, and there were lipoprotein and lipids distribution variations between C57BL/6 mice and human beings. In conclusion, this method which combined small volume needing size-exclusion fast protein liquid chromatography and fluorescence-based lipids measurement, provided a simple, efficient, integrity and reproducible procedure for determining serum lipoprotein and lipids profiles in micro-liter scale levels. It becomes possible that determination of lipoprotein profiles and gaining information of lipids in different lipoproteins can be accomplished simultaneously.


Subject(s)
Chromatography, Liquid/methods , Lipids/blood , Lipoproteins/blood , Animals , Chromatography, Gel/economics , Chromatography, Gel/methods , Chromatography, Liquid/economics , Humans , Lipids/isolation & purification , Lipoproteins/isolation & purification , Male , Mice , Mice, Inbred C57BL , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...