Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 415
Filter
1.
J Med Virol ; 96(5): e29659, 2024 May.
Article in English | MEDLINE | ID: mdl-38747016

ABSTRACT

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Subject(s)
Antigens, CD , Autophagy-Related Protein 5 , GPI-Linked Proteins , Hepatitis B virus , Virus Replication , Humans , Hepatitis B virus/physiology , Hepatitis B virus/genetics , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Hep G2 Cells , Signal Transduction , Gene Knockdown Techniques , Host-Pathogen Interactions , Hepatitis B/virology , Hepatitis B/genetics
2.
Article in English | MEDLINE | ID: mdl-38771687

ABSTRACT

Underwater images usually exhibit severe color cast, hazy appearance, and/or dark regions because of the complex lighting absorption and scattering in water. How to increase the quality of these degraded underwater images has emerged as a key issue for various underwater application tasks. Recent efforts have been made to deal with single type degradation, however, it is still challenging to deal with multiple degradations that usually coexist in an underwater image with a general network. The degradations in underwater images can be divided into medium-agnostic (hazy or low-light which also encountered in in-air images) and medium-specific (color distortion caused by the specific light attenuation property in water) ones. According to this observation, this article proposes a cascaded multimodule underwater image enhancement (UIE) framework to address the coexisted multiple degradations. In the proposed framework, an in-air image enhancement module and a novel proposed adaptive color channel compensation network (AC 3 Net) are cascaded, in which the former focuses primarily on solving medium-agnostic degradations and the latter is for handling the medium-specific degradation. This framework has good flexibility by cascading different types of in-air image enhancement networks with AC 3 Net to achieve various UIE. The effectiveness of the proposed framework has been extensively validated on various degraded underwater images as well as different underwater visual perception tasks.

3.
Sensors (Basel) ; 24(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38676088

ABSTRACT

Large-aperture, lightweight, and high-resolution imaging are hallmarks of major optical systems. To eliminate aberrations, traditional systems are often bulky and complex, whereas the small volume and light weight of diffractive lenses position them as potential substitutes. However, their inherent diffraction mechanism leads to severe dispersion, which limits their application in wide spectral bands. Addressing the dispersion issue in diffractive lenses, we propose a chromatic aberration correction algorithm based on compressed sensing. Utilizing the diffractive lens's focusing ability at the reference wavelength and its degradation performance at other wavelengths, we employ compressed sensing to reconstruct images from incomplete image information. In this work, we design a harmonic diffractive lens with a diffractive order of M=150, an aperture of 40 mm, a focal length f0=320 mm, a reference wavelength λ0=550 nm, a wavelength range of 500-800 nm, and 7 annular zones. Through algorithmic recovery, we achieve clear imaging in the visible spectrum, with a peak signal-to-noise ratio (PSNR) of 22.85 dB, a correlation coefficient of 0.9596, and a root mean square error (RMSE) of 0.02, verifying the algorithm's effectiveness.

4.
Cell Commun Signal ; 22(1): 236, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650003

ABSTRACT

BACKGROUND: The preservation of retinal ganglion cells (RGCs) and the facilitation of axon regeneration are crucial considerations in the management of various vision-threatening disorders. Therefore, we investigate the efficacy of interleukin-4 (IL-4), a potential therapeutic agent, in promoting neuroprotection and axon regeneration of retinal ganglion cells (RGCs) as identified through whole transcriptome sequencing in an in vitro axon growth model. METHODS: A low concentration of staurosporine (STS) was employed to induce in vitro axon growth. Whole transcriptome sequencing was utilized to identify key target factors involved in the molecular mechanism underlying axon growth. The efficacy of recombinant IL-4 protein on promoting RGC axon growth was validated through in vitro experiments. The protective effect of recombinant IL-4 protein on somas of RGCs was assessed using RBPMS-specific immunofluorescent staining in mouse models with optic nerve crush (ONC) and N-methyl-D-aspartic acid (NMDA) injury. The protective effect on RGC axons was evaluated by anterograde labeling of cholera toxin subunit B (CTB), while the promotion of RGC axon regeneration was assessed through both anterograde labeling of CTB and immunofluorescent staining for growth associated protein-43 (GAP43). RESULTS: Whole-transcriptome sequencing of staurosporine-treated 661 W cells revealed a significant upregulation in intracellular IL-4 transcription levels during the process of axon regeneration. In vitro experiments demonstrated that recombinant IL-4 protein effectively stimulated axon outgrowth. Subsequent immunostaining with RBPMS revealed a significantly higher survival rate of RGCs in the rIL-4 group compared to the vehicle group in both NMDA and ONC injury models. Axonal tracing with CTB confirmed that recombinant IL-4 protein preserved long-distance projection of RGC axons, and there was a notably higher number of surviving axons in the rIL-4 group compared to the vehicle group following NMDA-induced injury. Moreover, intravitreal delivery of recombinant IL-4 protein substantially facilitated RGC axon regeneration after ONC injury. CONCLUSION: The recombinant IL-4 protein exhibits the potential to enhance the survival rate of RGCs, protect RGC axons against NMDA-induced injury, and facilitate axon regeneration following ONC. This study provides an experimental foundation for further investigation and development of therapeutic agents aimed at protecting the optic nerve and promoting axon regeneration.


Subject(s)
Axons , Interleukin-4 , Nerve Regeneration , Retinal Ganglion Cells , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/metabolism , Animals , Interleukin-4/pharmacology , Axons/drug effects , Axons/metabolism , Nerve Regeneration/drug effects , Mice , Mice, Inbred C57BL , Optic Nerve Injuries/pathology , Optic Nerve Injuries/drug therapy , N-Methylaspartate/pharmacology , Staurosporine/pharmacology , Neuroprotective Agents/pharmacology , Recombinant Proteins/pharmacology
5.
Mol Cancer Ther ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648067

ABSTRACT

We recently reported that resistance to PD-1-blockade in a refractory lung cancer-derived model involved increased collagen deposition and the collagen-binding inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), and thus we hypothesized that LAIR1 and collagen cooperated to suppress therapeutic response. Here, we report LAIR1 is associated with tumor stroma and is highly expressed by intratumoral myeloid cells in both human tumors and mouse models of cancer. Stroma-associated myeloid cells exhibit a suppressive phenotype and correlate with LAIR1 expression in human cancer. NGM438, a novel humanized LAIR1 antagonist monoclonal antibody, elicits myeloid inflammation and allogeneic T cell responses by binding to LAIR1 and blocking collagen engagement. Further, a mouse-reactive NGM438 surrogate antibody sensitized refractory KP mouse lung tumors to anti-PD-1 therapy and resulted in increased intratumoral CD8+ T cell content and inflammatory gene expression. These data place LAIR1 at the intersection of stroma and suppressive myeloid cells and support the notion that blockade of the LAIR1/collagen axis can potentially address resistance to checkpoint inhibitor therapy in the clinic.

6.
Angew Chem Int Ed Engl ; : e202402568, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650435

ABSTRACT

The inefficient conversion of lead iodide to perovskite has become one of the major challenges in further improving the performance of perovskite solar cells fabricated by the two-step method. Herein, the discontinuous lead iodide layer realized by introduction of a polyfluorinated organic diammonium salt, octafluoro-([1,1'-biphenyl]-4,4'-diyl)-dimethanaminium (OFPP) iodide which does not form low-dimensional perovskites, can enable the satisfactory conversion of lead iodide into perovskite, leading to meliorated crystallinity and enlarged grains in the OFPP modulated perovskite (OFPP-PVK) film. Combined with the effective defect passivation, the OFPP-PVK films show enhanced charge mobility and suppressed charge recombination. Accordingly, the OFPP-based perovskite solar cells exhibit a champion efficiency of 24.76 % with better device stability. Moreover, a superior efficiency of 21.04 % was achieved in a large-area perovskite module (100 cm2). Our work provides a unique insight into the function of organic diammonium additive in boosting photovoltaic performance.

7.
Neurotox Res ; 42(2): 22, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564082

ABSTRACT

Chronic cerebral hypoperfusion (CCH) is a primary contributor to cognitive decline in the elderly. Enriched environment (EE) is proved to improve cognitive function. However, mechanisms involved remain unclear. The purpose of the study was exploring the mechanisms of EE in alleviating cognitive deficit in rats with CCH. To create a rat model of CCH, 2-vessel occlusion (2-VO) surgery was performed. All rats lived in standard or enriched environments for 4 weeks. Cognitive function was assessed using the novel object recognition test and Morris water maze test. The protein levels of glutamatergic synapses, neurotoxic reactive astrocytes, reactive microglia, and JAK2-STAT3 signaling pathway were measured using Western blot. The mRNA levels of synaptic regulatory factors, C1q, TNF-α, and IL-1α were identified using quantitative PCR. Immunofluorescence was used to detect glutamatergic synapses, neurotoxic reactive astrocytes, and reactive microglia, as well as the expression of p-STAT3 in astrocytes in the hippocampus. The results demonstrated that the EE mitigated cognitive impairment in rats with CCH and enhanced glutamatergic synaptogenesis. EE also inhibited the activation of neurotoxic reactive astrocytes. Moreover, EE downregulated microglial activation, levels of C1q, TNF-α and IL-1α and phosphorylation of JAK2 and STAT3. Our results suggest that inhibition of neurotoxic reactive astrocytes may be one of the mechanisms by which EE promotes glutamatergic synaptogenesis and improves cognitive function in rats with CCH. The downregulation of reactive microglia and JAK2-STAT3 signaling pathway may be involved in this process.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Humans , Aged , Animals , Rats , Astrocytes , Complement C1q , Tumor Necrosis Factor-alpha , Cognition , Janus Kinase 2 , STAT3 Transcription Factor
8.
Article in English | MEDLINE | ID: mdl-38502627

ABSTRACT

The remarkable performance of recent stereo depth estimation models benefits from the successful use of convolutional neural networks to regress dense disparity. Akin to most tasks, this needs gathering training data that covers a number of heterogeneous scenes at deployment time. However, training samples are typically acquired continuously in practical applications, making the capability to learn new scenes continually even more crucial. For this purpose, we propose to perform continual stereo matching where a model is tasked to 1) continually learn new scenes, 2) overcome forgetting previously learned scenes, and 3) continuously predict disparities at inference. We achieve this goal by introducing a Reusable Architecture Growth (RAG) framework. RAG leverages task-specific neural unit search and architecture growth to learn new scenes continually in both supervised and self-supervised manners. It can maintain high reusability during growth by reusing previous units while obtaining good performance. Additionally, we present a Scene Router module to adaptively select the scene-specific architecture path at inference. Comprehensive experiments on numerous datasets show that our framework performs impressively in various weather, road, and city circumstances and surpasses the state-of-the-art methods in more challenging cross-dataset settings. Further experiments also demonstrate the adaptability of our method to unseen scenes, which can facilitate end-to-end stereo architecture learning and practical deployment.

9.
Brain Res Bull ; 208: 110897, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340777

ABSTRACT

A typical enriched environment (EE), which combines physical activity and social interaction, has been proven to mitigate cognitive impairment caused by chronic cerebral hypoperfusion (CCH). However, it remains unclear how the different components of EE promote cognitive recovery after CCH. This study stripped out the different components of EE into physical environmental enrichment (PE) and social environmental enrichment (SE), and compared the neuroprotective effects of PE, SE and typical EE (PSE) in CCH. The results of novel object recognition and Morris water maze tests showed that PE, SE, and PSE improved cognitive function in CCH rats. Additionally, Nissl and TUNEL staining revealed that three EEs reduced neuronal loss in the hippocampus. PSE exhibited superior neuroprotective and functional improvement effects compared to PE and SE, while there was no significant difference between PE and SE. Furthermore, three EEs reduced lipid peroxidation in the hippocampus with decreasing the levels of MDA and increasing the activities of SOD and GSH. The expression of SLC7A11 and GPX4 was increased, while the level of p53 was reduced in three EEs. This suggested that three EEs inhibited ferroptosis by maintaining the redox homeostasis in the hippocampus. Three EEs reduced the levels of IL-ß, TNF-α, and IL-6, thereby inhibiting neuroinflammation. Additionally, Western blotting and immunofluorescence results indicated that three EEs also inhibited the TLR4/MyD88/p38MAPK signaling pathway. These findings collectively demonstrated that the three EEs alleviated hippocampal ferroptosis and neuroinflammation in CCH rats, thereby reducing neuronal loss, which might be associated with the inhibition of the TLR4/MyD88/p38MAPK signaling pathway. Moreover, the study results supported that it is only through the combination of physical exercise and social interaction that the optimal neuroprotective effects can be achieved. These findings provided valuable insights for the prevention and treatment of vascular cognitive impairment.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Ferroptosis , Neuroprotective Agents , Rats , Animals , Myeloid Differentiation Factor 88 , Toll-Like Receptor 4/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Neuroinflammatory Diseases , Cognitive Dysfunction/metabolism , Brain Ischemia/metabolism , Hippocampus/metabolism , Adaptor Proteins, Signal Transducing/metabolism
10.
Micromachines (Basel) ; 15(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38398908

ABSTRACT

Advancements in astronomical telescopes and cutting-edge technologies, including deep ultraviolet (DUV) and extreme ultraviolet (EUV) lithography, have escalated demands and imposed stringent surface quality requirements on optical system components. Achieving near-ideal optical components requires ultra-smooth surfaces with sub-nanometer roughness, no sub-surface damage, minimal surface defects, low residual stresses, and intact lattice integrity. This necessity has driven the rapid development and diversification of ultra-smooth surface fabrication technologies. This paper summarizes recent advances in ultra-smooth surface processing technologies, categorized by their material removal mechanisms. A subsequent comparative analysis evaluates the roughness and polishing characteristics of ultra-smooth surfaces processed on various materials, including fused silica, monocrystalline silicon, silicon carbide, and sapphire. To maximize each process's advantages and achieve higher-quality surfaces, the paper discusses tailored processing methods and iterations for different materials. Finally, the paper anticipates future development trends in response to current challenges in ultra-smooth surface processing technology, providing a systematic reference for the study of the production of large-sized freeform surfaces.

11.
Cancer Immunol Res ; 12(5): 592-613, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38393969

ABSTRACT

Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.


Subject(s)
Antigens, CD , Leukocyte Immunoglobulin-like Receptor B1 , Membrane Glycoproteins , Myeloid Cells , Receptors, Immunologic , Tumor Microenvironment , Receptors, Immunologic/metabolism , Animals , Humans , Mice , Tumor Microenvironment/immunology , Leukocyte Immunoglobulin-like Receptor B1/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Membrane Glycoproteins/metabolism , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism
12.
J Clin Transl Hepatol ; 12(2): 201-209, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38343615

ABSTRACT

Exosomes are 60-120 nm diameter double-membrane lipid organelles discharged by cells. Various studies have shown that exosomes exert multiple functions in both physical and diseased processes, such as intercellular information exchange, immune response, and disease progression. Repeated chronic injury to the liver often leads to inflammation and liver fibrosis (LF), a disorder that, if unchecked, may progress to cirrhosis, liver failure, portal hypertension, and even hepatocellular carcinoma. As an essential component of host innate immunity against pathogen invasion, macrophages play an important role in modulating inflammation homeostasis by finely tuning the polarization process of macrophages into either M1 or M2 subtypes in response to different microenvironments. As a critical contributor to the inflammation process, macrophages also play a complex and instrumental function in the progression of LF. This review focuses on recent advancements in the role of macrophage-associated exosomes implicated in LF, including macrophage-released exosomes and macrophage-targeted exosomes. In addition, the progress made in exosome-based antifibrotic therapy by in vivo and in vitro studies is also highlighted.

13.
Cancer Chemother Pharmacol ; 93(5): 471-479, 2024 May.
Article in English | MEDLINE | ID: mdl-38278871

ABSTRACT

PURPOSE: Report pharmacokinetic (PK)/pharmacodynamic (PD) findings from the phase III ClarIDHy study and any association between PK/PD parameters and treatment outcomes in this population. METHODS: Patients with mutant isocitrate dehydrogenase 1 (mIDH1) advanced cholangiocarcinoma were randomized at a 2:1 ratio to receive ivosidenib or matched placebo. Crossover from placebo to ivosidenib was permitted at radiographic disease progression. Blood samples for PK/PD analyses, a secondary endpoint, were collected pre-dose and up to 4 h post-dose on day (D) 1 of cycles (C) 1 - 2, pre-dose and 2 h post-dose on D15 of C1 - 2, and pre-dose on D1 from C3 onwards. Plasma ivosidenib and D-2-hydroxyglutarate (2-HG) were measured using liquid chromatography-tandem mass spectrometry. All clinical responses were centrally reviewed previously. RESULTS: PK/PD analysis was available for samples from 156 ivosidenib-treated patients. Ivosidenib was absorbed rapidly following single and multiple oral doses (time of maximum observed plasma concentration [Tmax] of 2.63 and 2.07 h, respectively). Ivosidenib exposure was higher at C2D1 than after a single dose, with low accumulation. In ivosidenib-treated patients, mean plasma 2-HG concentration was reduced from 1108 ng/mL at baseline to 97.7 ng/mL at C2D1, close to levels previously observed in healthy individuals. An average 2-HG inhibition of 75.0% was observed at steady state. No plasma 2-HG decreases were seen with placebo. Plasma 2-HG reductions were observed in ivosidenib-treated patients irrespective of best overall response (progressive disease, or partial response and stable disease). CONCLUSION: Once-daily ivosidenib 500 mg has a favorable PK/PD profile, attesting the 2-HG reduction mechanism of action and, thus, positive outcomes in treated patients with advanced mIDH1 cholangiocarcinoma. CLINICAL TRIAL REGISTRATION: NCT02989857 Registered February 20, 2017.


Subject(s)
Antineoplastic Agents , Bile Duct Neoplasms , Cholangiocarcinoma , Glycine , Glycine/analogs & derivatives , Isocitrate Dehydrogenase , Mutation , Pyridines , Humans , Cholangiocarcinoma/drug therapy , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/antagonists & inhibitors , Glycine/pharmacokinetics , Glycine/administration & dosage , Glycine/therapeutic use , Glycine/pharmacology , Pyridines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacology , Pyridines/therapeutic use , Male , Middle Aged , Female , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Aged , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Adult , Double-Blind Method , Aged, 80 and over , Cross-Over Studies , Treatment Outcome
14.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3862-3879, 2024 May.
Article in English | MEDLINE | ID: mdl-38190689

ABSTRACT

Rolling shutter temporal super-resolution (RSSR), which aims to synthesize intermediate global shutter (GS) video frames between two consecutive rolling shutter (RS) frames, has made remarkable progress with the development of deep convolutional neural networks over the past years. Existing methods cascade multiple separated networks to sequentially estimate intermediate motion fields and synthesize target GS frames. Nevertheless, they are typically complex, do not facilitate the interaction of complementary motion and appearance information, and suffer from problems such as pixel aliasing or poor interpretation. In this paper, we derive the uniform bilateral motion fields for RS-aware backward warping, which endows our network a more explicit geometric meaning by injecting spatio-temporal consistency information through time-offset embedding. More importantly, we develop a unified, single-stage RSSR pipeline to recover the latent GS video in a coarse-to-fine manner. It first extracts pyramid features from given inputs, and then refines the bilateral motion fields together with the anchor frame until generating the desired output. With the help of our proposed bilateral cost volume, which uses the anchor frame as a common reference to model the correlation with two RS frames, the gradually refined anchor frames not only facilitate intermediate motion estimation, but also compensate for contextual details, making additional frame synthesis or refinement networks unnecessary. Meanwhile, an asymmetric bilateral motion model built on top of the symmetric bilateral motion model further improves the generality and adaptability, yielding better GS video reconstruction performance. Extensive quantitative and qualitative experiments on synthetic and real data demonstrate that our method achieves new state-of-the-art results.

15.
Chin J Integr Med ; 30(4): 348-358, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212499

ABSTRACT

OBJECTIVE: To investigate the anti-tumor effects of Pien Tze Huang (PZH) in mouse models of B16-F10 melanoma, MC38 colorectal cancer, Hep1-6 hepatocellular carcinoma and chemically induced hepatocellular carcinoma model. METHODS: Various tumor models, including B16-F10, MC38 and Hep1-6 tumor hypodermic inoculation models, B16-F10 and Hep1-6 pulmonary metastasis models, Hep1-6 orthotopic implantation model, and chemically induced hepatocellular carcinoma model, were utilized to evaluate the anti-tumor function of PZH. Tumor growth was assessed by measuring tumor size and weight of solid tumors isolated from C57BL/6 mice. For cell proliferation and death of tumor cells in vitro, as well as T cell activation markers, cytokine production and immune checkpoints analysis, single-cell suspensions were prepared from mouse spleen, lymph nodes, and tumors after PZH treatment. RESULTS: PZH demonstrated significant therapeutic efficacy in inhibiting tumor growth (P<0.01). Treatment with PZH resulted in a reduction in tumor size in subcutaneous MC38 colon adenocarcinoma and B16-F10 melanoma models, and decreased pulmonary metastasis of B16-F10 melanoma and Hep1-6 hepatoma (P<0.01). However, in vitro experiments showed that PZH only had slight impact on the cell proliferation and survival of tumor cells (P>0.05). Nevertheless, PZH exhibited a remarkable ability to enhance T cell activation and the production of interferon gamma, tumor necrosis factor alpha, and interleukin 2 in CD4+ T cells in vitro (P<0.01 or P<0.05). Importantly, PZH substantially inhibited T cell exhaustion and boosted cytokine production by tumor-infiltrating CD8+ T cells (P<0.01 or P<0.05). CONCLUSION: This study has confirmed a novel immunomodulatory function of PZH in T cell-mediated anti-tumor immunity, indicating that PZH holds promise as a potential therapeutic agent for cancer treatment.


Subject(s)
Adenocarcinoma , Carcinoma, Hepatocellular , Colonic Neoplasms , Drugs, Chinese Herbal , Melanoma , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , Cytokines
16.
J Stroke Cerebrovasc Dis ; 33(1): 107471, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37966095

ABSTRACT

INTRODUCTION: The best anesthetic choice for patients with acute posterior circulation stroke during endovascular treatment (EVT) remains uncertain. METHOD: We searched five databases to identify studies that met the inclusion criteria. Our primary outcome measure was functional independence (FI). Secondary outcomes were 3-month mortality, any intracranial hemorrhage (ICH), symptomatic ICH (sICH), successful reperfusion, and procedure- and ventilator-associated complications. RESULTS: A total of 10 studies were included in our meta-analysis. No significant differences were detected between the general anesthesia (GA) and conscious sedation and local anesthesia (CS/LA) groups in 3-month FI (nine studies; OR=0.69; 95% CI 0.45-1.06; P=0.083; I2=66%;), 3-month mortality (nine studies; OR=1.41; 95% CI 0.94-2.11; P=0.096; I2=61.2%;), any ICH (three studies; OR=0.75; 95% CI 0.44-1.25; P=0.269; I2=0%;), or sICH (six studies; OR=0.64; 95% CI 0.40-1.04; P=0.073; I2=0%;). No significant differences were observed for successful reperfusion (10 studies; OR=1.17; 95% CI 0.91-1.49; P=0.219; I2=0%;), procedure-related complications (four studies; OR=1.14; 95% CI 0.70-1.87; P=0.603; I2=7.9%;), or respiratory complications (four studies; OR=1.19; 95% CI 0.61-2.32; P=0.616; I2=64.9%;) between the two groups. CONCLUSIONS: Our study showed no differences in 3-month FI, 3-month mortality, and successful reperfusion between patients treated with GA and those treated with CS/LA. Additionally, no increased risk of hemorrhagic transformation or pulmonary infection was observed in the CS/LA group. These results indicate that CS/LA may be an EVT option for acute posterior circulation stroke patients.


Subject(s)
Brain Ischemia , Endovascular Procedures , Ischemic Stroke , Stroke , Humans , Brain Ischemia/diagnosis , Brain Ischemia/therapy , Brain Ischemia/complications , Anesthesia, Local/adverse effects , Ischemic Stroke/etiology , Conscious Sedation/adverse effects , Conscious Sedation/methods , Treatment Outcome , Endovascular Procedures/adverse effects , Endovascular Procedures/methods , Anesthesia, General/adverse effects , Stroke/diagnosis , Stroke/therapy , Stroke/etiology , Intracranial Hemorrhages/etiology , Thrombectomy/adverse effects
17.
Soc Psychiatry Psychiatr Epidemiol ; 59(4): 599-609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37624465

ABSTRACT

PURPOSE: To examine within-individual time trends in mental well-being and factors influencing heterogeneity of these trends. METHODS: Longitudinal telephone survey of adults over 3 waves from the New York City (NYC) Metropolitan area during the COVID-19 Pandemic. Participants reported depression using the Patient Health Questionnaire (PHQ)-8, anxiety using the Generalized Anxiety Disorder (GAD)-7, and past 30-day increases in tobacco or alcohol use at each wave. Adjusted mixed effects logistic regression models assessed time trends in mental well-being. RESULTS: There were 1227 respondents. Over 3 study waves, there were statistically significant decreasing time trends in the odds of each outcome (adjusted OR (95% CI) 0.47 (0.37, 0.60); p < 0.001 for depression; aOR (95% CI) 0.55 (0.45, 0.66); p < 0.001 for anxiety; aOR (95% CI) 0.50 (0.35, 0.71); p < 0.001 for past 30-day increased tobacco use; aOR (95% CI) 0.31 (0.24, 0.40); p < 0.001 for past 30-day increased alcohol use). Time trends for anxiety varied by race and ethnicity (p value for interaction = 0.05, 4 df); anxiety declined over time among white, Black, Hispanic, and Other race and ethnicity but not among Asian participants. CONCLUSIONS: In a demographically varied population from the NYC Metropolitan area, depression, anxiety and increased substance use were common during the first months of the pandemic, but decreased over the following year. While this was consistently the case across most demographic groups, the odds of anxiety among Asian participants did not decrease over time.


Subject(s)
Asian , COVID-19 , Adult , Humans , Pandemics , Anxiety/epidemiology , Anxiety Disorders/epidemiology
18.
J Cell Mol Med ; 28(3): e18085, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38146129

ABSTRACT

Interleukin-6 (IL-6) is a cytokine generated by healthy constituents of the skin, but is also up-regulated by a wide range of skin lesions and inflammatory conditions to trigger cytopathy of skin cells. TRIM27 was identified to contribute to the functional effects of IL-6 on skin cells. However, the underlying mechanism was not clear. Lentivirus infection was used for gene overexpression or silencing. RT-PCR and Western blot were used to respectively assess mRNA and protein levels. Cell viability was assessed by CCK-8 assay. Extracellular flux analysis was used to assess the levels of oxygen consumption rate and extracellular acidification rate. Mouse back skin was treated with imiquimod to produce psoriasis-like inflammation in vivo. Histological assessment and immunohistochemistry staining were respectively applied to analyse lesioned mouse and human skin samples. IL-6-induced increased viability, glycolysis and inflammation in keratinocytes was inhibited both by a chemical methylation inhibitor and by METTL14 knockdown. Further investigation found that METTL14 induces m6A methylation of TRIM27, which is recognized by a m6A reader, IGF2BP2. Elevation of TRIM27 level and activation of IL-6/STAT3 signalling pathway were found in an in vivo psoriasis-like inflammation model, whereas inhibition m6A methylation strongly alleviated the inflammation. Finally, METTL14, TRIM27, STAT3, p-STAT3 and IL-6 expressions were all found to be increased in clinical skin samples of psoriatic patients. Our results unravelled METTL14/TRIM27/IGF2BP2 signalling axis in keratinocyte cytopathy, which plays a critical role in facilitating the activation of IL-6/STAT3 signalling pathway. Our findings should provide inspirations for the design of new therapeutics for skin inflammatory diseases including psoriasis.


Subject(s)
Adenine , Interleukin-6 , Methyltransferases , Psoriasis , Animals , Humans , Mice , Adenine/analogs & derivatives , DNA-Binding Proteins , Glycolysis , HaCaT Cells , Inflammation/pathology , Interleukin-6/pharmacology , Keratinocytes/pathology , Nuclear Proteins , Psoriasis/pathology , RNA-Binding Proteins , Transcription Factors , Tripartite Motif Proteins
19.
Biomed Eng Online ; 22(1): 128, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115006

ABSTRACT

RAGE is a multiligand receptor for the immunoglobulin superfamily of cell surface molecules and is expressed in Müller cells, vascular endothelial cells, nerve cells and RPE cells of the retina. Diabetic retinopathy (DR) is a multifactorial disease associated with retinal inflammation and vascular abnormalities and is the leading cause of vision loss or impairment in older or working-age adults worldwide. Therapies aimed at reducing the inflammatory response and unnecessary angiogenesis can help slow the progression of DR, which in turn can save patients' vision. To maximize the efficacy and minimize the side effects, treatments that target key players in the pathophysiological process of DR need to be developed. The interaction between RAGE and its ligands is involved in a variety of cytopathological alterations in the retina, including secretion of inflammatory factors, regulation of angiogenesis, oxidative stress, structural and functional changes, and neurodegeneration. In this review, we will summarize the pathologic pathways mediated by RAGE and its ligand interactions and discuss its role in the progression of diabetic retinopathy to explore potential therapeutic targets that are effective and safe for DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Aged , Endothelial Cells/metabolism , Retina , Inflammation , Neurons , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology
20.
PLoS One ; 18(11): e0294877, 2023.
Article in English | MEDLINE | ID: mdl-38011174

ABSTRACT

Imidacloprid is a neonicotinoid insecticide that efficiently controls piercing-sucking mouthparts pests. However, the impact of low lethal concentration of imidacloprid on key demographic parameters of wheat aphids, Schizaphis graminum (R.) and Rhopalosiphum padi (L.) has been scarcely studied. In this study, we used the age stage, two-sex life table approach to investigate the sublethal effects of imidacloprid on the biological traits of S. graminum and R. padi. Bioassays showed that imidacloprid possesses high toxicity to adult S. graminum and R. padi, with LC50 of 3.59 and 13.78 mg L-1 following 24 h exposure. A low lethal concentration of imidacloprid (LC25) significantly decreased adult longevity and total longevity of progeny generation aphids (F1) of S. graminum. Nevertheless, imidacloprid (LC25) had no significant effects on the fecundity and longevity of directly exposed parental parental S. graminum and R. padi (F0). Our results showed that the low lethal concentration of imidacloprid affected the demographic parameters that ultimately impact on the population of S. graminum. This study provides detailed information about the overall effects of imidacloprid on S. graminum and R. padi that might help to manage these two key pests.


Subject(s)
Aphids , Insecticides , Animals , Neonicotinoids/toxicity , Fertility , Insecticides/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...