Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Sci ; 114(11): 4413-4425, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37715566

ABSTRACT

Suppressing tumors through anti-angiogenesis has been established as an effective clinical treatment strategy. Bevacizumab, a monoclonal antibody, is commonly used in various indications. However, two major challenges limit the long-term efficacy of bevacizumab: drug resistance and side effects. Bevacizumab resistance has been extensively studied at the molecular level, but no drug candidates have been developed for clinical use to overcome this resistance. In a previous study conducted by our team, a major finding was that high expression of ESM1 in bevacizumab-resistant tumors is associated with an unfavorable response to treatment. In particular, an increase in ESM1 expression contributes to heightened lung metastasis and microvascular density, which ultimately decreases the tumor's sensitivity to bevacizumab. In contrast, the silencing of ESM1 results in reduced angiogenesis and suppressed tumor growth in tumors resistant to bevacizumab. We put forward the hypothesis that targeting ESM1 could serve as a therapeutic strategy in overcoming bevacizumab resistance. In this study, a variety of anti-ESM1 antibodies with high affinity to human ESM1 were successfully prepared and characterized. Our in vivo study confirmed the establishment of a bevacizumab-resistant human colorectal cancer model and further demonstrated that the addition of anti-ESM1 monoclonal antibodies to bevacizumab treatment significantly improved tumor response while downregulating DLL4 and MMP9. In conclusion, our study suggests that anti-hESM1 monoclonal antibodies have the potential to alleviate or overcome bevacizumab resistance, thereby providing new strategies and drug candidates for clinical research in the treatment of bevacizumab-resistant colorectal cancer.


Subject(s)
Colorectal Neoplasms , Lung Neoplasms , Humans , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Vascular Endothelial Growth Factor A , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Lung Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Neovascularization, Pathologic/pathology , Neoplasm Proteins , Proteoglycans
2.
Cancers (Basel) ; 14(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36428773

ABSTRACT

The development of drug resistance in malignant tumors leads to disease progression, creating a bottleneck in treatment. Bevacizumab is widely used clinically, and acts by inhibiting angiogenesis to "starve" tumors. Continuous treatment can readily induce rebound proliferation of tumor blood vessels, leading to drug resistance. Previously, we found that the fragment crystallizable (Fc) region of bevacizumab cooperates with the Toll-like receptor-4 (TLR4) ligand to induce M2b polarization in macrophages and secrete tumor necrosis factor-α (TNFα), which promotes immunosuppression, tumor metastasis, and angiogenesis. However, the downstream mechanism underlying TNFα-mediated bevacizumab resistance requires further investigation. Our RNA-Seq analysis results revealed that the expression of endothelial cell specific molecule-1 (ESM1) increased significantly in drug-resistant tumors and promoted metastasis and angiogenesis in vitro and in vivo. Furthermore, TNFα induced the upregulation of ESM1, which promotes metastasis and angiogenesis and regulates matrix metalloprotease-9 (MMP9), vascular endothelial growth factor (VEGF), and delta-like ligand-4 molecules (DLL4). Accordingly, the curative effect of bevacizumab improved by neutralizing ESM1 with high-affinity anti-ESM1 monoclonal antibody 1-2B7 in bevacizumab-resistant mice. This study provides important insights regarding the molecular mechanism by which TNFα-induced ESM1 expression promotes angiogenesis, which is significant for elucidating the mechanism of bevacizumab drug resistance and possibly identifying appropriate biosimilar molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...