Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 35(10): 1506-12, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23669371

ABSTRACT

This study aims to determine the pull-out strength, stiffness and failure pull-out energy of cement-augmented, cannulated-fenestrated pedicle screws in an osteoporotic cadaveric thoracolumbar model, and to determine, using synthetic bone samples, the extraction torques of screws pre-filled with cement and those with cement injected through perforations. Radiographs and bone mineral density measurements from 32 fresh thoracolumbar vertebrae were used to define specimen quality. Axial pull-out strength of screws was determined through mechanical testing. Mechanical pull-out strength, stiffness and energy-to-failure ratio were recorded for cement-augmented and non-cement-augmented screws. Synthetic bone simulating a human spinal bone with severe osteoporosis was used to measure the maximum extraction torque. The pull-out strength and stiffness-to-failure ratio of cement pre-filled and cement-injected screws were significantly higher than the non-cement-augmented control group. However, the cement pre-filled and cement-injected groups did not differ significantly across these values (p=0.07). The cement pre-filled group had the highest failure pull-out energy, approximately 2.8 times greater than that of the cement-injected (p<0.001), and approximately 11.5 times greater than that of the control groups (p<0.001). In the axial pull-out test, the cement-injected group had a greater maximum extraction torque than the cement pre-filled group, but was statistically insignificant (p=0.17). The initial fixation strength of cannulated screws pre-filled with cement is similar to that of cannulated screws injected with cement through perforations. This comparable strength, along with the heightened pull-out energy and reduced extraction torque, indicates that pedicle screws pre-filled with cement are superior for bone fixation over pedicle screws injected with cement.


Subject(s)
Bone Screws , Materials Testing , Mechanical Phenomena , Orthopedic Procedures/instrumentation , Spine , Aged , Biomechanical Phenomena , Bone Cements , Cadaver , Humans , Middle Aged , Osteoporosis/surgery , Torque
2.
Proc Inst Mech Eng H ; 226(10): 776-86, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23157079

ABSTRACT

Stiffness and contracture of the periarticular tissues are common complications of a post-traumatic elbow. Arthrodiatasis is a surgical technique that uses an external fixator for initial immobilization and subsequent distraction. The two prerequisites for an ideal arthrodiatasis are concentric distraction (avoiding bony contact) and hinge alignment (reducing internal stress). This study used the finite element (FE) method to clarify the relationship between these two prerequisites and the initial conditions (pin placement, elbow angle, and distraction mode). A total of 12 variations of the initial conditions were symmetrically arranged to evaluate their biomechanical influence on concentric distraction and hinge alignment. The humeroulnar surface was hypothesized to be ideally distracted orthogonal to the line joining the tips of the olecranon and the coronoid. The eccentric separation of the humeroulnar surfaces is a response to the non-orthogonality of the distracting force and joining line. Pin placement significantly affects the effective moment arm of the fixing pins to distract the bridged elbow. Both elbow angle and distraction mode directly alter the direction of the distracting force at the elbow center. In general, the hinges misalignment occurs in a direction opposite to the distraction-activated site. After joint distraction, the elastic deflection of the fixing pins inevitably makes both elbow and fixator hinges to misalign. This indicates that both joint distraction and hinge alignment are the interactive mechanisms. The humeroulnar separation is more concentric in the situation of the 120 degrees humeral distraction by using stiffer pins with convergent placement. Even so, the eccentric displacement of the elbow hinge is a crucial consideration in the initial placement of the guiding pin to compensate for hinge misalignment.


Subject(s)
Bone Nails , Bone Plates , Elbow Joint/physiopathology , Elbow Joint/surgery , Internal Fixators , Models, Biological , Osteogenesis, Distraction/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Failure Analysis , Finite Element Analysis , Humans , Prosthesis Design , Range of Motion, Articular
3.
Med Eng Phys ; 32(2): 203-11, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20061174

ABSTRACT

Anterior lumbar interbody fusion (ALIF) with cylindrical cages and supplemental posterior fixation has been widely used for internal disc derangement. However, most researchers have focused on single-level ALIF. Therefore, the biomechanical performance of various fixation constructs after two-level ALIF is not well characterized. This research used three-dimensional finite element models (FEM) with a nonlinear contact analysis to evaluate the initial biomechanical behavior of five types of fixation devices after two-level ALIF (L3/L4, L4/L5) under six loading conditions. These fixation constructs included a three-level pedicle screw and rod, a two-level translaminar facet screw, a two-level transfacet pedicle screw, a bisegmental pedicle screw and rod, and a bisegmental pedicle screw and rod with cross-linking. The FEM's developed in this study demonstrate that, compared to the other four types of posterior fixation constructs analyzed, the three-level pedicle screw and rod provide the best biomechanical stability. Both two-level facet screw fixation constructs showed unfavorable loading in lateral bending. For the construct of the three-level pedicle screw and rod, the middle-segment pedicle screw should not be omitted even though a cross-link is used. The two-level ALIF models with cages and posterior fixation constructs that we developed can be used to evaluate the initial biomechanical performance of a wide variety of posterior fixation devices prior to surgery.


Subject(s)
Finite Element Analysis , Internal Fixators , Lumbar Vertebrae/surgery , Spinal Fusion , Adult , Biomechanical Phenomena , Humans , Lumbar Vertebrae/anatomy & histology , Lumbar Vertebrae/physiology , Male , Models, Anatomic , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...