Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 472: 134394, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703690

ABSTRACT

The use of plastics has become deeply ingrained in our society, and there are no indications that its prevalence will decrease in the foreseeable future. This article provides a comprehensive overview of the global plastic waste disposal landscape, examining it through regional perspectives, various management technologies (dumping or landfilling, incineration, and reuse and recycling), and across different sectors including agriculture and food, textile, tourism, and healthcare. Notably, this study compiles the findings on life-cycle carbon footprints associated with various plastic waste management practices as documented in the literature. Employing the bio-circular-green economy model, we advocate for the adoption of streamlined and sustainable approaches to plastic management. Unique management measures are also discussed including the utilization of bioplastics combined with smart and efficient collection processes that facilitate recycling, industrial composting, or anaerobic digestion. Moreover, the integration of advanced recycling methods for conventional plastics with renewable energy, the establishment of plastic tax and credits, and the establishment of extended producer responsibility are reviewed. The success of these initiatives relies on collaboration and support from peers, industries, and consumers, ultimately contributing to informed decision-making and fostering sustainable practices in plastic waste management.


Subject(s)
Plastics , Recycling , Waste Management , Waste Management/methods , Waste Management/economics , Refuse Disposal/methods , Refuse Disposal/economics , Carbon Footprint , Carbon/chemistry
2.
RSC Adv ; 14(20): 13926-13933, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38686304

ABSTRACT

This study explored the influence of structural characteristics of organic contaminants on the degradation during an advanced oxidation process (AOP). The target contaminants were acetaminophen (ACT), bisphenol A (BPA), and tetracycline (TC). The Fenton process was selected as the model process in which major reactive species of hydroxyl radicals in most AOPs are generated for target compound degradation. The optimal reagent concentration ratio was [Fe2+]/[H2O2] = 0.5 mM/0.5 mM in an acidic condition, resulting in 83.49%, 79.01%, and 91.37% removals of ACT, BPA, and TC, respectively. Contrarily, the mineralization rates were apparently lower compared to their respective removal efficiencies. Experimental observation also suggested that the aromatic structure was rather difficult to degrade since their unsaturated electron clouds would hinder the attack of hydroxyl radicals due to electric repulsion. The preferred attacking sites of an aromatic ring differ due to the functional groups and structure symmetry. However, the electrophilic attack of the hydroxyl radical is the major reaction for decomposing aliphatic structures of cyclic or branched organics, resulting in the highest removal and mineralization of TC among these three tested chemicals. In addition, an apparent removal of a contaminant may not necessarily reduce its toxic impact on the environment.

3.
Sci Total Environ ; 912: 169241, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38072271

ABSTRACT

Groundwater has been known as the second largest freshwater storage in the world, following surface water. Over the years, groundwater has already been under overwhelming pressure to satisfy human needs for artificial activities around the world. Meanwhile, the most noticeable footprint of human activities is the impact of climate change. Climate change has the potential to change the physical and chemical properties of groundwater, thereby affecting its ecological functions. This study summarizes existing research affiliated with the possible effects of a changing climate on the quality of groundwater, including changes in water availability, increased salinity and pollution from extreme weather events, and the potentiality of seawater intrusion into coastal aquifers. Previous works dealing with groundwater-induced responses to the climate system and climate impacts on groundwater quality through natural and anthropogenic processes have been reviewed. The climate-induced changes in groundwater quality including pH, dissolved oxygen level, salinity, and concentrations of organic and inorganic compounds were assessed. Some future research directions are proposed, including exploring the potential changes in the occurrences and fate of micropollutants in groundwater, examining the relationship between the increase of microcystin in groundwater and climate change, studying the changes in the stability of metals and metal complexation, and completing studies across different regional climate regions.

4.
iScience ; 26(9): 107649, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37670788

ABSTRACT

Plastic pollution and climate change are two major environmental focuses. Having the forming potential due to ambient plastic pollution, the environmental fate of microplastics shall be inevitably impacted by global warming. This manuscript discusses the destiny of environmental microplastics and characterizes their fate considering the framework of the planetary boundary. The major routes for microplastic discharge include the release of microplastic stored in the ice into the sea when the ice melts as a result of global temperature increase, flushing of the plastic/microplastic debris from the shorelines into the adjacent water bodies as a result of increased rainfall, redistribution of the microplastics away from the source of plastic debris as a result of increased wind, and accumulation of microplastics in the soil as a result of drought. A perspective on the impact of climate change and microplastic pollution on aquatic and soil organisms was discussed as well.

5.
Environ Sci Pollut Res Int ; 30(7): 19259-19268, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36224466

ABSTRACT

The existence of per- and polyfluoroalkyl substances (PFASs) in water is of serious interest due to their toxic, bioaccumulative, and persistent nature, and adsorption is an effective approach for the PFASs removal. In the present study, we developed a polymeric adsorbent by cross-linking chitosan and ß-cyclodextrin using glutaraldehyde (Chi-Glu-ß-CD) and evaluated its removal performance for perfluorobutanesulfonate (PFBS) from water. The results indicate that the performance was highly affected by solution pH; under a more acidic condition (e.g., pH 2.0), a higher removal efficiency was detected, and faster adsorption kinetics was observed with the rate constant (k2) of 0.001 ± 3×10-4 g mg-1 min-1. Adsorption isotherm data agreed to the Sips model with a maximum heterogeneous adsorption capacity of 135.70 ± 25.70 mg g-1, probably due to protonated amine (NH+) and electron-deficient ß-CD cavities. The adsorption mechanism was confirmed using energy dispersive X-ray and Fourier transform infrared (FTIR) spectroscopy, showing the role of electrostatic attractions between the protonated amine and the negatively charged PFBS molecule (especially, with sulfonate side (N-H--O-S)) and host-guest inclusion formations with ß-CD cavity in adsorption. Additionally, the synthesized adsorbent was recovered using methanol without any significant decline in adsorption efficiency even after four continuous adsorption/desorption cycles. All these findings suggested that the Chi-Glu-ß-CD composite could be a promising adsorbent in the removal of PFBS from water.


Subject(s)
Chitosan , Fluorocarbons , Water Pollutants, Chemical , beta-Cyclodextrins , Chitosan/chemistry , Adsorption , Kinetics , Water , beta-Cyclodextrins/chemistry , Polymers/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
6.
Environ Technol ; : 1-15, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35815372

ABSTRACT

While the worldwide distribution of geogenic arsenic (As)-affected groundwater is highly overlapped with the areas with abundant groundwater, utilization of As-contained groundwater is an inevitable compromise in those areas where surface water is not enough for irrigation. Since the occurrence of As in groundwater is often accompanied by high iron (Fe) contents, the facilitation of As and Fe precipitation without adding additional oxidizers and adsorbents is considered an environmental-friendly approach to removing As in groundwater. In the present study, the oxidation/filtration dual-process with sprinkling height of 25 cm and 120 kg filter media efficiently increased the dissolved oxygen (DO) concentration (0.36-1.52 mg/L) and oxidation-reduction potential (ORP) (24-63 mV), which facilitated the formation of Fe oxides and As co-precipitation. The correlation of As removal efficiencies with their respective flow rates indicated that a decrease in groundwater Fe and an increase of Fe in sands and gravels filters as the flow rate increased evidenced the rapid oxidation of Fe to form the Fe hydroxides. In a 40-hour continuous aeration/filtration operation, As and Fe concentrations in groundwater were reduced by 79.5% and 64.88% within 40 hrs, respectively. The ease of filter replacement and cost-effectiveness in operation can be the major attractions and innovations for future field practices.

7.
J Clean Prod ; 367: 133027, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35821718

ABSTRACT

Coronavirus disease (COVID-19) has led to increasing demand for single-use plastic which aggravates the already existing plastic waste problem. Not only does the demand for personal protective equipment (PPE) increase, but also people shift their preference to online shopping and food delivery to comply with administrative policies for COVID-19 pandemic control. The used PPEs, packaging materials, and food containers may not be handled or recycled properly after their disposal. As a result, the mismanaged plastic waste is discharged into the environment and it may pose even greater risks after breaking into smaller fragments, which was regarded as the source of secondary microplastics (MPs, < 5 mm) or nanoplastics (NPs, < 1 µm). The main objective of this manuscript is to provide a review of the studies related to microplastic release due to pandemic-associated plastic waste. This study summarizes the limited work published on the ecotoxicological/toxicological effect of MPs/NPs released from PPE on aquatic organisms, soil organisms, as well as humans. Given the current status of research on MPs from COVID-related plastic waste, the immediate research directions needed on this topic were discussed.

8.
iScience ; 24(7): 102704, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34258548

ABSTRACT

A huge amount of agricultural wastes and waste activated-sludge are being generated every year around the world. Anaerobic co-digestion (AcD) has been considered as an alternative for the utilization of organic matters from such organic wastes by producing bioenergy and biochemicals to realize a circular bioeconomy. Despite recent advancement in AcD processes, the effect of feedstock compositions and operating conditions on the biomethane production processe has not been critically explored. In this paper, we have reviewed the effects of feedstock (organic wastes) characteristics, including particle size, carbon-to-nitrogen ratio, and pretreatment options, on the performance of an anaerobic digestion process. In addition, we provided an overview of the effect of key control parameters, including retention time, temperature, pH of digestate, volatile fatty acids content, total solids content, and organic loading rate. Lastly, based on the findings from the literature, we have presented several perspectives and prospects on priority research to promote AcD to a steppingstone for a circular bioeconomy.

9.
Water Res ; 199: 117193, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33971532

ABSTRACT

Due to the growing and diverse demands on water supply, exploitation of non-conventional sources of water has received much attention. Since water consumption for irrigation is the major contributor to total water withdrawal, the utilization of non-conventional sources of water for the purpose of irrigation is critical to assuring the sustainability of water resources. Although numerous studies have been conducted to evaluate and manage non-conventional water sources, little research has reviewed the suitability of available water technologies for improving water quality, so that water reclaimed from non-conventional supplies could be an alternative water resource for irrigation. This article provides a systematic overview of all aspects of regulation, technology and management to enable the innovative technology, thereby promoting and facilitating the reuse of non-conventional water. The study first reviews the requirements for water quantity and quality (i.e., physical, chemical, and biological parameters) for agricultural irrigation. Five candidate sources of non-conventional water were evaluated in terms of quantity and quality, namely rainfall/stormwater runoff, industrial cooling water, hydraulic fracturing wastewater, process wastewater, and domestic sewage. Water quality issues, such as suspended solids, biochemical/chemical oxygen demand, total dissolved solids, total nitrogen, bacteria, and emerging contaminates, were assessed. Available technologies for improving the quality of non-conventional water were comprehensively investigated. The potential risks to plants, human health, and the environment posed by non-conventional water reuse for irrigation are also discussed. Lastly, three priority research directions, including efficient collection of non-conventional water, design of fit-for-purpose treatment, and deployment of energy-efficient processes, were proposed to provide guidance on the potential for future research.


Subject(s)
Waste Disposal, Fluid , Water , Agricultural Irrigation , Agriculture , Humans , Wastewater
10.
J Environ Manage ; 279: 111613, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33168302

ABSTRACT

The present study aimed to investigate the copper distribution in a river through the integrated utilization of the soil hydrological assessment model and water quality model. The Erren River was selected as the investigated river system because an apparent heavy metal pollution was observed. The Soil and Water Assessment Tool (SWAT) was employed to estimate the soil flux. The Water Quality Analysis Simulation Program Model (WASP) was used for water quality simulation. The copper was selected as the model chemical and scenarios of various copper effluent control measures and impacts of the heavy rainfall by climate change on copper concentration were simulated. The results showed that the aqueous copper was adsorbed to suspended solids and the high aqueous copper concentration resulted in a high copper concentration in the sediment. In dry seasons, the aqueous copper concentration increased 215% comparing to the 2006-2016 average (baseline) concentration and a 20% decrease in copper concentration in the sediment was observed due to less wash-out solid. Under the impact of enhanced rainfall by climate change, the aqueous copper concentration decreased due to the increased river flow, which also reduced the copper deposition causing the copper concentration in the sediment lower than that in the baseline condition. In the middle and downstream river sections, the copper concentration in the water and sediment phases decreased around 66% by implementing a more-stringent effluent standard. The suspended solid played a key role for copper movement in a river. The copper accumulation in the sediment might be alleviated by reducing its aqueous concentration.


Subject(s)
Climate Change , Water Quality , Copper/analysis , Environmental Monitoring , Models, Theoretical , Soil , Water
11.
Bioresour Technol ; 318: 124045, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32889126

ABSTRACT

Despite the wide applications of dry anaerobic digestion (AD), a number of fundamental issues, such as composition-oriented estimation of biogas production and CO2 reduction potential, were not well understood yet. The objective of this study was to establish composition-oriented models for prediction of biogas production and the associated shift of microbial communities. Three important factors regarding feedstock, including loading, carbon-to-nitrogen ratio, and solid-to-liquid ratio, were found to significantly affect the biogas production. The biogas production and digestion kinetics were evaluated with the response surface methodology. The major contribution to biogas production was found to be hydrogenotrophic methanogens (82.6 ± 0.4%). The net CO2 reduction potential was assessed from the life-cycle approach, and a substantial amount of CO2 generation (i.e., 2.8-6.7 tonne/tonne-VS) could be reduced by AD, compared to incineration, revealing that dry AD for food waste treatment should be one of the essential practices in the portfolio of global CO2 mitigation.


Subject(s)
Biofuels , Refuse Disposal , Anaerobiosis , Bioreactors , Carbon Dioxide/analysis , Food , Methane
12.
Plants (Basel) ; 9(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545592

ABSTRACT

Bidens pilosa L. var. radiata Sch. Bip. (BPr) had been found capable of excluding Cyperus rotundus L. (CR) from its vegetation in fallow fields. Both allelopathy and competition of BPr were able to limit the growth of CR, but this has not been extensively investigated. To verify the two effects of BPr on CR management, density-dependent experiments and interspecies competitions with the application of activated carbon were conducted. The effects of BPr soil and its residues on the reproduction of CR were also evaluated. The results showed that the residues of BPr reduced the growth (54-61% of control) and tuber number (58-71% of control) of CR in the 3 plants pot-1 treatment but not in higher density treatments. In the interspecies competition, BPr exhibited an allelopathic but not competitive effect on CR when activated carbon was absent. CR tuber sprouting was significantly suppressed when sowed in the BPr soil. Likewise, BPr residue mulch inhibited the CR plant density by 87% as compared to natural-occurring CR residue mulch in the field. This study revealed that BPr might have potential for use as a cover plant and allelopathic mulch to control CR in the agroecosystem.

13.
Chemosphere ; 258: 127338, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32544813

ABSTRACT

This study aimed to explore the catalytic effect of co-dissolved organic compounds on the tetracycline degradation by Fenton process both in the acidic and neutral environment. The experiments were carried out at [Fe2+]/[H2O2] of 50 µM/50 µM and 50 µM/100 µM. The humic acid, citrate and α-cyclodextrin were selected as the co-dissolved organic compounds. The best removal efficiency of 71% was observed at [Fe2+]/[H2O2] of 50 µM/100 µM without the presence of co-dissolved organic compounds. In the presence of co-dissolved organic compounds, the competition effect occurred and tetracycline removal efficiency was reduced to different extents depending on the H2O2 concentrations and chemical properties of the co-dissolved organic substances. The mechanistic exploration confirmed that the complex-forming interactions among Fe2+, tetracycline and organic co-dissolved molecules kept the catalytic ferrous/ferric redox cycle operating to generate hydroxyl radicals for tetracycline degradation at neutral condition, and this phenomenon was more obvious when the H2O2 concentration was higher. Complex formation also contributed to the overall tetracycline removal in addition to oxidation reactions. By comparing to the mass spectra of citrate, the α-cyclodextrin having a larger molecular structure might react with hydroxyl radicals at a higher probability, resulting in an apparent difference in degradation efficiency despite of the equality of their existing amount in the beginning of the experiment.


Subject(s)
Environmental Restoration and Remediation/methods , Hydrogen Peroxide/chemistry , Organic Chemicals/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Humic Substances , Iron/chemistry , Oxidation-Reduction , Tetracycline/chemistry , Water Pollutants, Chemical/analysis
14.
J Hazard Mater ; 389: 121871, 2020 05 05.
Article in English | MEDLINE | ID: mdl-31879098

ABSTRACT

This study aimed to assess the distribution of spent pesticides in an agro-farming area and to evaluate their impact on the ecological risk for an endangered species combing the health risk assessment concept with the modelling algorithm proposed by European Food Safety Authority (EFSA). An agricultural area in western Taiwan was chosen to investigate the ecological risk on Prionailurus bengalensis. Their ecological stability was evaluated in the context of the residuals' distribution of the spent pesticides in the investigated area. The pesticide residues accumulated and correlated highly to the adverse health impact on the leopard cat. In the present study, 67 pesticides were detected from 79 collected soil samples. The hazard index (HI) was found related to land use patterns and the HI values in Yuanli and Zhuolan were significantly higher than those in the other areas, increasing poisoning probability of the leopard cat. The locations of agro-chemical utilization were highly overlapped with leopard cats' activity zone, supporting the hypothesis that pesticide residues posed a potential threat to the leopard cats' health. The proposed risk assessment framework was capable of estimating the risk caused by pesticide residues and no similar study has been reported before.


Subject(s)
Dietary Exposure/adverse effects , Endangered Species , Panthera , Pesticides/toxicity , Soil Pollutants/toxicity , Agriculture , Animals , Environmental Monitoring , Lethal Dose 50 , No-Observed-Adverse-Effect Level , Pesticides/analysis , Risk Assessment , Soil Pollutants/analysis , Taiwan
15.
Article in English | MEDLINE | ID: mdl-30871135

ABSTRACT

The water⁻energy⁻food (WEF) nexus attracts much attention due to the elevated public concern regarding environmental conservation and sustainability. As we head into a new era of civilization, population increase and modernized lifestyles have led to an increasing need for water, energy, and food. However, severe hydrological precipitation significantly impacts agricultural harvest, and such influence becomes more apparent under the influence of climate change. Meanwhile, the major method of electricity generation (i.e., fossil fuel burning) has a negative impact on the environment. These inevitable threats are crucial and have to be dealt with for a society on the road towards sustainability. In the present study, an integrated evaluation of the WEF nexus was conducted for two areas with different levels of urbanization using empirical multiple linear regression in a simultaneous equation model (SEM). By incorporating the collected data into the SEM, the weighting coefficient of each identified variable was obtained, and the nexus implication was assessed in model simulation at different scenarios considering the population growth, agro-technology advancement, energy structure improvement, and available water resources. In the simulated results, three observations were found: (1) the rural area is more sustainable than the urban one; (2) the sustainability for both the investigated areas is significantly subject to their water supply and demand; and (3) food production was found to have a less important effect on the sustainable development of the urban area. This study identified the key factors in the WEF nexus exploration, which are economically and environmentally important for resource allocation. An empirical model was developed to correlate sustainable achievement with WEF management, as well as strategic policies that should be implemented under the pressure of urbanization.


Subject(s)
Food Supply , Urbanization , Water Supply , Agriculture , Climate Change , Conservation of Natural Resources , Population Growth
16.
Mar Pollut Bull ; 136: 84-91, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30509845

ABSTRACT

Many shipwreck events occur in the neighboring areas of Taiwan due to the volume of maritime traffic and geographical conditions around Taiwan. The oil spills from such events can be devastating for the surrounding sea and coastal areas. The government realized the importance of marine pollution prevention and enforced the Marine Pollution Control Act and the Major Marine Oil Pollution Emergency Response Plan to mitigate the impact of oil spill pollution. The T.S. Taipei shipwreck highlighted the effectiveness of the national marine pollution prevention system. Inter-departmental cooperation and collaboration with private sectors are the keys for effective response. This article is the first detailed documentation of an oil spill response for a maritime incident from the beginning to the final termination of shipwreck removal. It shows the people in Taiwan intend to collaborate with other states to make a significant contribution to marine environment conservation and sustainability.


Subject(s)
Conservation of Water Resources/methods , Disaster Planning/legislation & jurisprudence , Petroleum Pollution/prevention & control , Ships , Water Pollution/prevention & control , Conservation of Water Resources/legislation & jurisprudence , Disaster Planning/organization & administration , Government Regulation , International Cooperation , Oceans and Seas , Petroleum Pollution/analysis , Petroleum Pollution/legislation & jurisprudence , Taiwan , Water Pollution/analysis , Water Pollution/legislation & jurisprudence
17.
Article in English | MEDLINE | ID: mdl-29414884

ABSTRACT

Taste- and odor-causing (T&O) compounds are a major concern in drinking water treatment plants due to their negative impacts on the safety and palatability of water supply. This study explored the degradation kinetics and radical chemistry of four often-detected T&O compounds, geosmin (GSM), 2-methylisoborneol (MIB), benzothiazole (BT), and 2-isobutyl-3-methoxypyrazine (IBMP), in the ultraviolet/chlorine (UV/chlorine) advanced oxidation process. All experiments were carried out in a 700 mL photoreactor and the process effectively degraded the investigated T&O compounds in a slightly acidic environment. The degradation of T&O decreased with increasing pH but slightly with decreasing chlorine dosage. When the pH increased from 6 to 8, the pseudo-first-order rate constants of GSM, MIB, BT, and IBMP dropped from 2.84 × 10-3, 2.29 × 10-3, 3.64 × 10-3, and 2.76 × 10-3 s-1 to 3.77 × 10-4, 2.64 × 10-4, 6.48 × 10-4, and 6.40 × 10-4 s-1, respectively. Increasing the chlorine dosage slightly accelerated the degradation of the investigated T&O compounds, but excessive hypochlorous acid and hypochlorite scavenged the HO• radicals and reactive chlorine species (RCS). Generally, HO• primarily contributed to the degradation of all of the investigated T&O compounds as compared to RCS. The degradation by RCS was found to be structurally selective. RCS could not degrade GSM, but contributed to the degradation of MIB, BT, and IBMP. The results confirmed that the proposed oxidation process effectively degraded typical T&O compounds in aqueous phase.


Subject(s)
Chlorine/chemistry , Odorants , Oxidation-Reduction , Taste , Ultraviolet Rays , Water Pollutants, Chemical , Water Purification/methods , Camphanes , Kinetics , Water Pollutants, Chemical/analysis
18.
Sci Total Environ ; 610-611: 845-853, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28826122

ABSTRACT

Paddy rice (Oryza sativa L.) is a major staple crop in Asia. However, heavy metal accumulation in paddy soil poses a health risk for rice consumption. Although plant uptake of Pb is usually low, Pb concentrations in rice plants have been increasing with Pb contamination in paddy fields. It is known that iron oxide deposits in the rhizosphere influence the absorption of soil Pb by rice plants. In this study, 14 rice cultivars bred in Taiwan, including ten japonica cultivars (HL21, KH145, TC192, TK9, TK14, TK16, TN11, TNG71, TNG84, and TY3) and four indica cultivars (TCS10, TCS17, TCSW2, and TNGS22), were used in a field experiment. We investigated the genotypic variation in rice plant Pb in relation to iron oxides deposited in the rhizosphere, as seen in a suspiciously contaminated site in central Taiwan. The results showed that the cultivars TCSW2, TN11, TNG71, and TNG84 accumulated brown rice Pb exceeding the tolerable level of 0.2mgkg-1. In contrast, the cultivars TNGS22, TK9, TK14, and TY3 accumulated much lower brown rice Pb (<0.1mgkg-1); therefore, they should be prioritized as safe cultivars for sites with potential contamination. Moreover, the iron oxides deposited on the rhizosphere soil show stronger affinity to soil-available Pb than those on the root surface to form iron plaque. The relative tendency of Pb sequestration toward rhizosphere soil was negatively correlated with the Pb concentrations in brown rice. The iron oxides deposited on the rhizosphere soil but not on the root surface to form iron plaque dominate Pb sequestration in the rhizosphere. Therefore, the enhancement of iron oxide deposits on the rhizosphere soil could serve as a barrier preventing soil Pb on the root surface and result in reduced Pb accumulation in brown rice.


Subject(s)
Ferric Compounds/chemistry , Lead/pharmacokinetics , Oryza/chemistry , Soil Pollutants/pharmacokinetics , Soil/chemistry , Genotype , Oryza/genetics , Plant Roots , Rhizosphere , Taiwan
19.
Article in English | MEDLINE | ID: mdl-30598034

ABSTRACT

Urban metabolism analyzes the supply and consumption of nutrition, material, energy, and other resources within cities. Food, water, and energy are critical resources for the human society and have complicated cooperative/competitive influences on each other. The management of interactive resources is essential for supply chain analysis. This research analyzes the food-water-energy system of urban metabolism for sustainable resources management. A system dynamics model is established to investigate the urban metabolism of food, water, and energy resources. This study conducts a case study of Shihmen Reservoir system, hydropower generation, paddy rice irrigation of Taoyuan and Shihmen Irrigation Associations, and water consumption in Taoyuan, New Taipei, and Hsinchu cities. The interactive influence of the food-water-energy nexus is quantified in this study; the uncertainty analysis of food, water, and energy nexus is presented.


Subject(s)
Conservation of Natural Resources/methods , Conservation of Natural Resources/statistics & numerical data , Drinking , Food Supply/statistics & numerical data , Water Supply/statistics & numerical data , Cities/statistics & numerical data , Humans , Models, Theoretical , Taiwan
20.
Water Res ; 124: 446-453, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28783498

ABSTRACT

A novel Fe(II)/citrate/UV/PMS process for degrading a model micropollutant, carbamazepine (CBZ), at a low Fe(II)/PMS ratio and neutral pH has been proposed in this study, and the mechanisms of radical generation in the system was explored. With a UV dose of 302.4 mJ/cm2, an initial pH of 7, and CBZ, PMS, Fe(II) and citrate at initial concentrations of 10, 100, 12 and 26 µM, respectively, the CBZ degradation efficiency reached 71% in 20 min in the Fe(II)/citrate/UV/PMS process, which was 4.7 times higher than that in either the citrate/UV/PMS or Fe(II)/citrate/PMS process. The enhanced CBZ degradation in the Fe(II)/citrate/UV/PMS process was mainly attributed to the continuous activation of PMS by the UV-catalyzed regenerated Fe(II) from a Fe(III)-citrate complex, [Fe3O(cit)3H3]2-, which not only maintained Fe(III) soluble at neutral pH, but also increased 6.6 and 2.6 times of its molar absorbance and quantum yield as compared to those of ionic Fe(III), respectively. In the Fe(II)/citrate/UV/PMS process, the SO4•- produced from the fast reaction between PMS and the initially-added Fe(II) contributed 11% of CBZ degradation. The PMS activation by the UV radiation and regenerated Fe(II) contributed additional 14% and 46% of CBZ removal, respectively. The low iron and citrate doses and the fast radical generation at neutral pH make the Fe(II)/citrate/UV/PMS process suitable for degrading recalcitrant organic compounds in potable water.


Subject(s)
Carbamazepine/chemistry , Ferrous Compounds , Water Pollutants, Chemical/chemistry , Citrates , Citric Acid , Ferric Compounds , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...