Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(17): 9012-9019, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38625688

ABSTRACT

Hydrate-based CO2 storage in the ocean is considered a potential method for mitigating the greenhouse effect. Numerous studies demonstrated that NaCl exhibited the dual effects of promotion and inhibition in the nucleation and growth processes of CO2 hydrate, whose mechanisms remain unclear. In this study, the effects of NaCl at various concentrations on the CO2 hydrate growth and crystal are investigated. The independent gradient model based on Hirshfeld partition, electrostatic potential, and binding energy is conducted to study the interaction between ions and water molecules. The motion trajectories of ions are observed at the molecular level to reflect the impact of ion motion on hydrate growth. The results show that the influence of NaCl on hydrate growth depends on a delicate balance of dual promotion-inhibition effects. NaCl can combine more water molecules and provide a transport channel of CO2 to promote hydrate growth at low concentrations. Meanwhile, the promoting effects shift toward inhibition with increasing NaCl concentrations. In a word, this paper proposes a novel mechanism for the dual promotion-inhibition effects of NaCl on hydrate growth, which is significant for further research on hydrate-based CO2 storage in the ocean.

2.
Langmuir ; 40(1): 960-967, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38150588

ABSTRACT

Surfactant-free microemulsions (SFMEs) have been explored extensively to avoid the residual surfactant problem caused by traditional surfactant microemulsions. Many researchers focused on the SFMEs with tertiary amine, which exhibited the typical CO2 response behavior. In this study, the phase diagram of the SFMEs consisting of tripropylamine (TPA), ethanol, and water was readily prepared via the measurements of electrical conductivity. The CO2 response behavior of SFME was confirmed by determination of conductivity and measurement of the average diameter of SFME, which was mainly dependent on the protonation of TPA induced by the additional CO2. The transition of protonated TPA to a more hydrophilic nature from lipophilicity to hydrophilicity should be responsible for the variation of SFME average diameter. In addition, the SFMEs exhibited remarkable solubilizing capacity of crude oil, and three types of SFMEs achieved more than 80% oil removal rate in the washing process of oil sands. It was noted that both oil-in-water and bicontinuous SFMEs could be circularly utilized at least three times with a relatively high oil removal rate (%). Our work provided the insight perspective on the mechanism of SFMEs with a CO2 response behavior.

3.
Langmuir ; 39(32): 11448-11458, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37535862

ABSTRACT

Nanoparticles (NPs) exhibit great potential to improve various properties of viscoelastic surfactant (VES) fracturing fluids in the development of low-permeability reservoirs. In the present study, the amphiphilic Janus NPs (JANPs) were fabricated via the Pickering emulsion method and employed to construct the novel JA12C (JANPs with dodecyl hydrophobic carbon chains)-assisted VES fracturing fluid (JAVES). The successful fabrication of JANPs was confirmed via Fourier transform infrared spectroscopy (FTIR) measurements and water contact angle tests. The rheology behavior of the VES fracturing fluid incorporating various SiO2 NPs including hydrophilic SiO2 NPs (HLNPs), JA8C (JANPs with octyl hydrophobic carbon chains), and JA12C was systematically investigated. It was revealed that the additional JA12C significantly improved the tolerance and proppant suspension properties. To explore the subsequent oil recovery performance of various gel breaking liquids, the formation wettability and the oil-water interfacial tension (IFT) were studied after the evaluation of breaking properties and formation damage properties of various fracturing fluids. The results suggested that the JAVES gel breaking liquid showed remarkable wettability alternation capability and moderate oil-water IFT reduction ability, which can partially reduce the impact on reservoir permeability. Moreover, the formation mechanism of the JAVES was proposed by molecular dynamics simulations at the molecular level, which was further visually verified via the cryo-TEM images. The improved viscoelasticity of developed the JAVES with moderate interfacial activity is advantageous to enhance subsequent oil recovery.

4.
Langmuir ; 37(40): 11835-11843, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34586807

ABSTRACT

A surfactant interfacial adsorption process is highly associated with its micellization behaviors in the water phase, which is of great fundamental and practical significance in enhanced oil recovery. In this paper, the typical anionic surfactant 1-dodecanesulfonic acid sodium (DAS) and nonionic surfactants octylphenol polyoxyethylene ether-n (OP-n, n = 1, 5, and 10) are introduced to investigate their micellization behavior and interfacial adsorption process via molecular dynamics simulation. Number density profiles reveal that the additional OP5 molecules in the water phase generate the mixed micelle with DAS molecules and greatly promote its interfacial adsorption. Interaction energy calculation is employed to confirm the interaction of anionic/nonionic surfactants in the mixed micelle. Then, the radial distribution function, solvent-accessible surface area, and solvation free energy are calculated to further explore and verify the adsorption mechanism of the mixed micelle. It is found that the nonionic surfactant obviously decreases the hydrophilicity of the mixed micelle in the water phase, which should be responsible for its intensive tendency of the interfacial adsorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...