Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 36(31)2024 May 08.
Article in English | MEDLINE | ID: mdl-38657636

ABSTRACT

We investigate the magnetic and transport properties of a kagome magnet YbMn6Sn6. We have grown YbMn6Sn6single crystals having a HfFe6Ge6type structure with ordered Yb and Sn atoms, which is different from the distorted structure previously reported. The single crystal undergoes a ferromagnetic phase transition around 300 K and a ferrimagnetic transition at approximately 30 K, and the magnetic transition at low temperature may be correlated to the ordered Yb sublattice. Negative magnetoresistance has been observed at high temperatures, while the positive magnetoresistance appears at 5 K when the current is oriented out of kagome plane. We observe a large anisotropic anomalous Hall effect with the intrinsic Hall contribution of 141 Ω-1cm-1forσzxintand 32 Ω-1cm-1forσxyint, respectively. These values are similar to those in YMn6Sn6with the same anisotropy. The magnetic transition and anomalous Hall behavior in YbMn6Sn6highlights the influence of the ordered Yb atoms and rare earth elements on its magnetic and transport properties.

2.
Science ; 381(6655): 325-330, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37347950

ABSTRACT

The ability to control the underlying lattice geometry of a system may enable transitions between emergent quantum ground states. We report in situ gate switching between honeycomb and triangular lattice geometries of an electron many-body Hamiltonian in rhombohedral (R)-stacked molybdenum ditelluride (MoTe2) moiré bilayers, resulting in switchable magnetic exchange interactions. At zero electric field, we observed a correlated ferromagnetic insulator near one hole per moiré unit cell with a widely tunable Curie temperature up to 14 K. Applying an electric field switched the system into a half-filled triangular lattice with antiferromagnetic interactions; further doping this layer-polarized superlattice tuned the antiferromagnetic exchange interaction back to ferromagnetic. Our work demonstrates R-stacked MoTe2 moirés to be a laboratory for engineering correlated states with nontrivial topology.

3.
Nature ; 622(7981): 63-68, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37315640

ABSTRACT

The interplay between spontaneous symmetry breaking and topology can result in exotic quantum states of matter. A celebrated example is the quantum anomalous Hall (QAH) state, which exhibits an integer quantum Hall effect at zero magnetic field owing to intrinsic ferromagnetism1-3. In the presence of strong electron-electron interactions, fractional QAH (FQAH) states at zero magnetic field can emerge4-8. These states could host fractional excitations, including non-Abelian anyons-crucial building blocks for topological quantum computation9. Here we report experimental signatures of FQAH states in a twisted molybdenum ditelluride (MoTe2) bilayer. Magnetic circular dichroism measurements reveal robust ferromagnetic states at fractionally hole-filled moiré minibands. Using trion photoluminescence as a sensor10, we obtain a Landau fan diagram showing linear shifts in carrier densities corresponding to filling factor v = -2/3 and v = -3/5 ferromagnetic states with applied magnetic field. These shifts match the Streda formula dispersion of FQAH states with fractionally quantized Hall conductance of [Formula: see text] and [Formula: see text], respectively. Moreover, the v = -1 state exhibits a dispersion corresponding to Chern number -1, consistent with the predicted QAH state11-14. In comparison, several non-ferromagnetic states on the electron-doping side do not disperse, that is, they are trivial correlated insulators. The observed topological states can be electrically driven into topologically trivial states. Our findings provide evidence of the long-sought FQAH states, demonstrating MoTe2 moiré superlattices as a platform for exploring fractional excitations.

5.
ACS Appl Mater Interfaces ; 15(18): 22282-22290, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37078781

ABSTRACT

We studied the magneto-optical Kerr effect (MOKE) of two-dimensional (2D) heterostructure CrI3/In2Se3/CrI3 using density functional theory calculations and symmetry analysis. The spontaneous polarization in the In2Se3 ferroelectric layer and the antiferromagnetic ordering in CrI3 layers break the mirror and the time-reversal symmetry, thus activating MOKE. We show that the Kerr angle can be reversed by either the polarization or the antiferromagnetic order parameter. Our results suggest that ferroelectric and antiferromagnetic 2D heterostructures could be exploited for ultracompact information storage devices, where the information is encoded by the two ferroelectric or the two time-reversed antiferromagnetic states and the read-out is performed optically by MOKE.

6.
Nat Phys ; 18(7): 813-818, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35855397

ABSTRACT

The crystal symmetry of a material dictates the type of topological band structures it may host, and therefore symmetry is the guiding principle to find topological materials. Here we introduce an alternative guiding principle, which we call 'quasi-symmetry'. This is the situation where a Hamiltonian has an exact symmetry at lower-order that is broken by higher-order perturbation terms. This enforces finite but parametrically small gaps at some low-symmetry points in momentum space. Untethered from the restraints of symmetry, quasi-symmetries eliminate the need for fine-tuning as they enforce that sources of large Berry curvature will occur at arbitrary chemical potentials. We demonstrate that a quasi-symmetry in the semi-metal CoSi stabilizes gaps below 2 meV over a large near-degenerate plane that can be measured in the quantum oscillation spectrum. The application of in-plane strain breaks the crystal symmetry and gaps the degenerate point, observable by new magnetic breakdown orbits. The quasi-symmetry, however, does not depend on spatial symmetries and hence transmission remains fully coherent. These results demonstrate a class of topological materials with increased resilience to perturbations such as strain-induced crystalline symmetry breaking, which may lead to robust topological applications as well as unexpected topology beyond the usual space group classifications.

8.
Nat Commun ; 12(1): 6213, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34711834

ABSTRACT

The phase offset of quantum oscillations is commonly used to experimentally diagnose topologically nontrivial Fermi surfaces. This methodology, however, is inconclusive for spin-orbit-coupled metals where π-phase-shifts can also arise from non-topological origins. Here, we show that the linear dispersion in topological metals leads to a T2-temperature correction to the oscillation frequency that is absent for parabolic dispersions. We confirm this effect experimentally in the Dirac semi-metal Cd3As2 and the multiband Dirac metal LaRhIn5. Both materials match a tuning-parameter-free theoretical prediction, emphasizing their unified origin. For topologically trivial Bi2O2Se, no frequency shift associated to linear bands is observed as expected. However, the π-phase shift in Bi2O2Se would lead to a false positive in a Landau-fan plot analysis. Our frequency-focused methodology does not require any input from ab-initio calculations, and hence is promising for identifying correlated topological materials.

9.
Adv Mater ; 33(41): e2102107, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34463975

ABSTRACT

An effective way of manipulating 2D surface states in magnetic topological insulators may open a new route for quantum technologies based on the quantum anomalous Hall effect. The doping-dependent evolution of the electronic band structure in the topological insulator Sb2- x Vx Te3 (0 ≤ x ≤ 0.102) thin films is studied by means of electrical transport. Sb2- x Vx Te3 thin films were prepared by molecular beam epitaxy, and Shubnikov-de Hass (SdH) oscillations are observed in both the longitudinal and transverse transport channels. Doping with the 3d element, vanadium, induces long-range ferromagnetic order with enhanced SdH oscillation amplitudes. The doping effect is systematically studied in various films depending on thickness and bottom gate voltage. The angle-dependence of the SdH oscillations reveals their 2D nature, linking them to topological surface states as their origin. Furthermore, it is shown that vanadium doping can efficiently modify the band structure. The tunability by doping and the coexistence of the surface states with ferromagnetism render Sb2- x Vx Te3 thin films a promising platform for energy band engineering. In this way, topological quantum states may be manipulated to crossover from quantum Hall effect to quantum anomalous Hall effect, which opens an alternative route for the design of quantum electronics and spintronics.

10.
Adv Mater ; 33(7): e2003168, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33296128

ABSTRACT

The emerging class of topological materials provides a platform to engineer exotic electronic structures for a variety of applications. As complex band structures and Fermi surfaces can directly benefit thermoelectric performance it is important to identify the role of featured topological bands in thermoelectrics particularly when there are coexisting classic regular bands. In this work, the contribution of Dirac bands to thermoelectric performance and their ability to concurrently achieve large thermopower and low resistivity in novel semimetals is investigated. By examining the YbMnSb2 nodal line semimetal as an example, the Dirac bands appear to provide a low resistivity along the direction in which they are highly dispersive. Moreover, because of the regular-band-provided density of states, a large Seebeck coefficient over 160 µV K-1 at 300 K is achieved in both directions, which is very high for a semimetal with high carrier concentration. The combined highly dispersive Dirac and regular bands lead to ten times increase in power factor, reaching a value of 2.1 mW m-1 K-2 at 300 K. The present work highlights the potential of such novel semimetals for unusual electronic transport properties and guides strategies towards high thermoelectric performance.

11.
Nat Commun ; 11(1): 3507, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32665572

ABSTRACT

It has recently been proposed that combining chirality with topological band theory results in a totally new class of fermions. Understanding how these unconventional quasiparticles propagate and interact remains largely unexplored so far. Here, we use scanning tunneling microscopy to visualize the electronic properties of the prototypical chiral topological semimetal PdGa. We reveal chiral quantum interference patterns of opposite spiraling directions for the two PdGa enantiomers, a direct manifestation of the change of sign of their Chern number. Additionally, we demonstrate that PdGa remains topologically non-trivial over a large energy range, experimentally detecting Fermi arcs in an energy window of more than 1.6 eV that is symmetrically centered around the Fermi level. These results are a consequence of the deep connection between chirality in real and reciprocal space in this class of materials, and, thereby, establish PdGa as an ideal topological chiral semimetal.

12.
Adv Mater ; 32(14): e1908518, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32080900

ABSTRACT

It has been demonstrated that topological nontrivial surface states can favor heterogeneous catalysis processes such as the hydrogen evolution reaction (HER), but a further decrease in mass loading and an increase in activity are still highly challenging. The observation of massless chiral fermions associated with large topological charge and long Fermi arc (FA) surface states inspires the investigation of their relationship with the charge transfer and adsorption process in the HER. In this study, it is found that the HER efficiency of Pt-group metals can be boosted significantly by introducing topological order. A giant nontrivial topological energy window and a long topological surface FA are expected at the surface when forming chiral crystals in the space group of P21 3 (#198). This makes the nontrivial topological features resistant to a large change in the applied overpotential. As HER catalysts, PtAl and PtGa chiral crystals show turnover frequencies as high as 5.6 and 17.1 s-1 and an overpotential as low as 14 and 13.3 mV at a current density of 10 mA cm-2 . These crystals outperform those of commercial Pt and nanostructured catalysts. This work opens a new avenue for the development of high-efficiency catalysts with the strategy of topological engineering of excellent transitional catalytic materials.

13.
Inorg Chem ; 58(22): 14939-14980, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31668070

ABSTRACT

Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objective of this Viewpoint is to examine the state of the art of atomic-scale simulative and experimental protocols aimed to the design of novel functional nanostructured materials, and to present new perspectives in the relative fields. This is the result of the debates of Symposium I "Atomic-scale design protocols towards energy, electronic, catalysis, and sensing applications", which took place within the 2018 European Materials Research Society fall meeting.

14.
Nat Commun ; 10(1): 2447, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31164654

ABSTRACT

Interlayer interactions in 2D materials, also known as van der Waals (vdWs) interactions, play a critical role in the physical properties of layered materials. It is fascinating to manipulate the vdWs interaction, and hence to "redefine" the material properties. Here, we demonstrate that in-plane biaxial strain can effectively tune the vdWs interaction of few-layer black phosphorus with thickness of 2-10 layers, using infrared spectroscopy. Surprisingly, our results reveal that in-plane tensile strain efficiently weakens the interlayer coupling, even though the sample shrinks in the vertical direction due to the Poisson effect, in sharp contrast to one's intuition. Moreover, density functional theory (DFT) calculations further confirm our observations and indicate a dominant role of the puckered lattice structure. Our study highlights the important role played by vdWs interactions in 2D materials during external physical perturbations.

15.
ACS Appl Mater Interfaces ; 10(4): 3994-4000, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29322766

ABSTRACT

Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.

16.
J Am Chem Soc ; 139(37): 12883-12886, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28853870

ABSTRACT

Hybrid organic-inorganic compounds attract a lot of interest for their flexible structures and multifunctional properties. For example, they can have coexisting magnetism and ferroelectricity whose possible coupling gives rise to magnetoelectricity. Here using first-principles computations, we show that, in a perovskite metal-organic framework (MOF), the magnetic and electric orders are further coupled to optical excitations, leading to an Electric tuning of the Magneto-Optical Kerr effect (EMOKE). Moreover, the Kerr angle can be switched by reversal of both ferroelectric and magnetic polarization only. The interplay between the Kerr angle and the organic-inorganic components of MOFs offers surprising unprecedented tools for engineering MOKE in complex compounds. Note that this work may be relevant to acentric magnetic systems in general, e.g., multiferroics.

18.
Phys Rev Lett ; 115(25): 257201, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26722941

ABSTRACT

Large magnetic anisotropy energy (MAE) is desirable and critical for nanoscale magnetic devices. Here, using ligand-field level diagrams and density functional calculations, we well explain the very recent discovery [I. G. Rau et al., Science 344, 988 (2014)] that an individual Co adatom on a MgO (001) surface has a large MAE of more than 60 meV. More importantly, we predict that a giant MAE up to 110 meV could be realized for Ru adatoms on MgO (001), and even more for the Os adatoms (208 meV). This is a joint effect of the special ligand field, orbital multiplet, and significant spin-orbit interaction, in the intermediate-spin state of the Ru or Os adatoms on top of the surface oxygens. The giant MAE could provide a route to atomic scale memory.

19.
Sci Rep ; 4: 7542, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25519762

ABSTRACT

One often counts the nearest neighbouring (NN) exchange interactions for understanding of a magnetic insulator. Here we present first-principles calculations for the newly synthesized double perovskites Sr2NiIrO6 and Sr2ZnIrO6, and we find that the 2NN Ir-Ir antiferromagnetic coupling is even stronger than the 1NN Ni-Ir ferromagnetic one. Thus, the leading antiferromagnetic interactions in the fcc Ir sublattice give rise to a magnetic frustration. Sr2NiIrO6 and Sr2ZnIrO6 hence appear very similarly as a distorted low-temperature antiferromagnet (probably, of type III). This work highlights the long-range magnetic interactions of the delocalized 5d electrons, and it also addresses why the spin-orbit coupling is ineffective here.

SELECTION OF CITATIONS
SEARCH DETAIL
...