Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Biol Trace Elem Res ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991670

ABSTRACT

Exposure to essential and toxic metals occurs simultaneously as a mixture in real-life. However, there is no consensus regarding the effects of co-exposure to multiple metal(loid)s (designated hereafter metals) on blood lipid levels. Thus, blood concentrations of six human essential metals and five toxic metals in 720 general populations from southeastern China were simultaneously determined as a measure of exposure. In addition, quantile g-computation, Bayesian kernel machine regression, elastic net regression, and generalized linear model were used to investigate both the joint and individual effects of exposure to this metal mixture on human blood lipid levels. The significant positive joint effect of exposure to this metal mixture on serum total cholesterol (TC) levels, rather than on serum triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, Castelli risk index I, Castelli risk index II, atherogenic coefficient, and non-HDL-C levels, was found. In addition, the positive effect may be primarily driven by selenium (Se), lead (Pb), and mercury (Hg) exposure. In addition, on the effect of TC levels, the synergistic effect between Pb and Hg and the antagonistic effect between Se and Pb were identified. Our finding suggests that combined exposure to this metal mixture may affect human blood lipid levels. Therefore, reducing exposure to heavy metals, such as Pb and Hg, should be a priority for the general population. In addition, Se supplementation should also be considered with caution.

2.
Ecotoxicol Environ Saf ; 264: 115425, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37660527

ABSTRACT

Lead (Pb), cadmium (Cd), and mercury (Hg) are environmentally toxic heavy metals that can be simultaneously detected at low levels in the blood of the general population. Although our previous studies have demonstrated neurodevelopmental toxicity upon co-exposure to these heavy metals at these low levels, the precise mechanisms remain largely unknown. Dendritic spines are the structural foundation of memory and undergo significant dynamic changes during development. This study focused on the dynamics of dendritic spines during brain development following Pb, Cd, and Hg co-exposure-induced memory impairment. First, the dynamic characteristics of dendritic spines in the prefrontal cortex were observed throughout the life cycle of normal rats. We observed that dendritic spines increased rapidly from birth to their peak value at weaning, followed by significant pruning and a decrease during adolescence. Dendritic spines tended to be stable until their loss in old age. Subsequently, a rat model of low-dose Pb, Cd, and Hg co-exposure from embryo to adolescence was established. The results showed that exposure to low doses of heavy metals equivalent to those detected in the blood of the general population impaired spatial memory and altered the dynamics of dendritic spine pruning from weaning to adolescence. Proteomic analysis of brain and blood samples suggested that differentially expressed proteins upon heavy metal exposure were enriched in dendritic spine-related cytoskeletal regulation and axon guidance signaling pathways and that cofilin was enriched in both of these pathways. Further experiments confirmed that heavy metal exposure altered actin cytoskeleton dynamics and disturbed the dendritic spine pruning-related LIM domain kinase 1-cofilin pathway in the rat prefrontal cortex. Our findings demonstrate that low-dose Pb, Cd, and Hg co-exposure may promote memory impairment by perturbing dendritic spine dynamics through dendritic spine pruning-related signaling pathways.


Subject(s)
Cadmium , Mercury , Humans , Adolescent , Animals , Rats , Cadmium/toxicity , Mercury/toxicity , Dendritic Spines , Lead/toxicity , Proteomics , Actin Depolymerizing Factors , Brain , Memory Disorders/chemically induced
3.
Environ Sci Pollut Res Int ; 30(41): 94552-94564, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37532974

ABSTRACT

In the real world, humans are exposed to multiple metal(loid)s (designated hereafter metals) that contain essential metals as well as toxic metals. Exposure to the metal mixture was assumed to be associated with renal function impairment; however, there is no consensus on available studies. Therefore, we here explored the association between multiple metals exposure and indicators of renal function in the general population from southeastern China. A total of 11 metals with 6 human essential metals and 5 toxic metals were determined in the selected 720 subjects. In addition, serum uric acid (SUA), serum creatinine (SCR), and the estimated glomerular filtration rate (eGFR) were measured or calculated as indicators of renal function. Using multiple flexible statistical models of generalized linear model, elastic net regression, and Bayesian kernel machine regression, the joint as well as the individual effect of metals within the mixture, and the interactions between metals were explored. When exposed to the metal mixture, the statistically non-significantly increased SUA, the significantly increased SCR, and the significantly declined eGFR were observed. In addition, the declined renal function may be primarily attributed to lead (Pb), arsenic (As), and nickel (Ni) exposure. Finally, interactions, such as the synergistic effect between Pb and Mo on SUA, whereas the antagonistic effect between Ni and Cd on SCR and eGFR were identified. Our finding suggests that combined exposure to multiple metals would impair renal function. Therefore, reducing exposure to toxic heavy metals of Pb, As, and Cd and limiting exposure to the human essential metal of Ni would protect renal function.


Subject(s)
Arsenic , Metals, Heavy , Humans , Cross-Sectional Studies , Cadmium , Bayes Theorem , Lead , Uric Acid , Nickel , Heavy Metal Poisoning , Kidney/physiology , China
4.
Mol Neurobiol ; 60(10): 6029-6042, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37407880

ABSTRACT

Humans are commonly exposed to the representative neurotoxic heavy metals lead (Pb), cadmium (Cd), and mercury (Hg). These three substances can be detected simultaneously in the blood of the general population. We have previously shown that a low-dose mixture of these heavy metals induces rat learning and memory impairment at human exposure levels, but the pathogenic mechanism is still unclear. LIM kinase 1 (LIMK1) plays a critical role in orchestrating synaptic plasticity during brain function and dysfunction. Hence, we investigated the role of LIMK1 activity in low-dose heavy metal mixture-induced neurobehavioral deficits and structural synaptic plasticity disorders. Our results showed that heavy metal mixture exposure altered rat fear responses and spatial learning at general population exposure levels and that these alterations were accompanied by downregulation of LIMK1 phosphorylation and structural synaptic plasticity dysfunction in rat hippocampal tissues and cultured hippocampal neurons. In addition, upregulation of LIMK1 phosphorylation attenuated heavy metal mixture-induced structural synaptic plasticity, dendritic actin dynamics, and cofilin phosphorylation damage. The potent LIMK1 inhibitor BMS-5 yielded similar results induced by heavy metal mixture exposure and aggravated these impairments. Our findings demonstrate that LIMK1 plays a crucial role in neurobehavioral deficits induced by low-dose heavy metal mixture exposure by suppressing structural synaptic plasticity.


Subject(s)
Mercury , Metals, Heavy , Humans , Rats , Animals , Metals, Heavy/toxicity , Hippocampus/pathology , Mercury/toxicity , Cadmium/toxicity , Neuronal Plasticity , Lim Kinases
5.
Sci Total Environ ; 895: 165009, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37353033

ABSTRACT

The heavy metals lead (Pb), cadmium (Cd), and mercury (Hg) that cause neurocognitive impairment have been extensively studied. These elements typically do not exist alone in the environment; they are often found with other heavy metals and can enter the body through various routes, thereby impacting health. Our previous research showed that low Pb, Cd, and Hg levels cause neurobehavioral impairments in weaning and adult rats. However, little is known about the biomarkers and mechanisms underlying Pb, Cd, and Hg mixture-induced neurological impairments. A combined analysis of metabolomic and proteomic data may reveal heavy metal-induced alterations in metabolic and protein profiles, thereby improving our understanding of the molecular mechanisms underlying heavy metal-induced neurological impairments. Therefore, brain tissue and serum samples were collected from rats exposed to a Pb, Cd, and Hg mixture for proteomic and metabolomic analyses, respectively. The analysis revealed 363 differential proteins in the brain and 206 metabolites in serum uniquely altered in the Pb, Cd, and Hg mixture exposure group, compared to those of the control group. The main metabolic impacted pathways were unsaturated fatty acids biosynthesis, linoleic acid metabolism, phenylalanine metabolism, and tryptophan metabolism. We further identified that the levels of arachidonic acid (C20:4 n-3) and, adrenic acid (C22:4 n-3) were elevated and that kynurenic acid (KA) and quinolinic acid (QA) levels and the KA/QA ratio, were decreased in the group exposed to the Pb, Cd, and Hg mixture. A joint analysis of the proteome and metabolome showed that significantly altered proteins such as LPCAT3, SLC7A11, ASCL4, and KYAT1 may participate in the neurological impairments induced by the heavy metal mixture. Overall, we hypothesize that the dysregulation of ferroptosis and kynurenine pathways is associated with neurological damage due to chronic exposure to a heavy metal mixture.


Subject(s)
Mercury , Metals, Heavy , Rats , Animals , Cadmium/toxicity , Proteomics , Lead/toxicity , Metals, Heavy/toxicity , Mercury/toxicity , Brain
6.
Food Chem Toxicol ; 175: 113707, 2023 May.
Article in English | MEDLINE | ID: mdl-36893892

ABSTRACT

Contaminated water and food are the main sources of lead, cadmium, and mercury in the human body. Long-term and low-level ingestion of these toxic heavy metals may affect brain development and cognition. However, the neurotoxic effects of exposure to lead, cadmium, and mercury mixture (Pb + Cd + Hg) at different stages of brain development are rarely elucidated. In this study, different doses of low-level Pb + Cd + Hg were administered to Sprague-Dawley rats via drinking water during the critical stage of brain development, late stage, and after maturation, respectively. Our findings showed that Pb + Cd + Hg exposure decreased the density of memory- and learning-related dendritic spines in the hippocampus during the critical period of brain development, resulting in hippocampus-dependent spatial memory deficits. Only the density of learning-related dendritic spines was reduced during the late phase of brain development and a higher-dose of Pb + Cd + Hg exposure was required, which led to hippocampus-independent spatial memory abnormalities. Exposure to Pb + Cd + Hg after brain maturation revealed no significant change in dendritic spines or cognitive function. Further molecular analysis indicated that morphological and functional changes caused by Pb + Cd + Hg exposure during the critical phase were associated with PSD95 and GluA1 dysregulation. Collectively, the effects of Pb + Cd + Hg on cognition varied depending on the brain development stages.


Subject(s)
Mercury , Metals, Heavy , Rats , Animals , Humans , Cadmium/toxicity , Cadmium/analysis , Lead/toxicity , Lead/analysis , Rats, Sprague-Dawley , Mercury/toxicity , Mercury/analysis , Cognition , Hippocampus
7.
Int J Hyg Environ Health ; 248: 114113, 2023 03.
Article in English | MEDLINE | ID: mdl-36641952

ABSTRACT

Environmental exposure to heavy metal mixture of lead (Pb), cadmium (Cd), and mercury (Hg) would induce hazardous health effects. However, there is a paucity of data on how exposure to heavy metal mixture alters the metabolic dynamics of individual metals. Considering that the dose plays a key role in determining the toxicity of heavy metals, we performed a factorial design with three heavy metals (Pb, Cd, and Hg) at low exposure levels. Female rats were exposed to Pb, Cd, and (or) Hg from successful mating until pup weaning. Their concentrations in maternal blood, breast milk, and postnatal day 0 (PND0) and PND21 offspring blood and whole brain were measured. Using ANOVA analysis, Pearson correlation, and structural equation model, we demonstrated the complex interactions among heavy metals during their absorption, mother-offspring transport, and target organ accumulation. Among all the explored samples, almost all the highest Pb, Cd, and Hg levels were observed in their respective single heavy metal exposure groups. In addition, Hg was found could antagonize the transport of Pb or Cd, when they cross the placental barrier and blood-brain barriers (BBB). However, the effect of Hg no longer presented when they are absorbed through the digestive system. The antagonistic effect of Pb on Cd was observed when they cross the placental barrier. In addition, Cd was also found to compete the transport pathway of Pb when they cross the BBB after birth. Compared to Pb and Hg, we found that the transport efficiency of Cd in the digestive system was lower, whereas the chelation of Cd by the placental barrier was better. This preliminary information may help researchers to explore the mechanism underlying the hazardous effects of heavy metal mixture exposure, or for regulatory agencies to revise guidelines for heavy metal exposure.


Subject(s)
Mercury , Metals, Heavy , Female , Pregnancy , Rats , Animals , Cadmium/toxicity , Lead/toxicity , Mercury/toxicity , Placenta , Metals, Heavy/toxicity , Lactation
8.
PLoS One ; 17(12): e0279706, 2022.
Article in English | MEDLINE | ID: mdl-36574427

ABSTRACT

OBJECTIVE: Ischemic stroke (IS) with subsequent cerebrocardiac syndrome (CCS) has a poor prognosis. We aimed to investigate electrocardiogram (ECG) changes after IS with artificial intelligence (AI). METHODS: We collected ECGs from a healthy population and patients with IS, and then analyzed participant demographics and ECG parameters to identify abnormal features in post-IS ECGs. Next, we trained the convolutional neural network (CNN), random forest (RF) and support vector machine (SVM) models to automatically detect the changes in the ECGs; Additionally, We compared the CNN scores of good prognosis (mRS ≤ 2) and poor prognosis (mRS > 2) to assess the prognostic value of CNN model. Finally, we used gradient class activation map (Grad-CAM) to localize the key abnormalities. RESULTS: Among the 3506 ECGs of the IS patients, 2764 ECGs (78.84%) led to an abnormal diagnosis. Then we divided ECGs in the primary cohort into three groups, normal ECGs (N-Ns), abnormal ECGs after the first ischemic stroke (A-ISs), and normal ECGs after the first ischemic stroke (N-ISs). Basic demographic and ECG parameter analyses showed that heart rate, QT interval, and P-R interval were significantly different between 673 N-ISs and 3546 N-Ns (p < 0.05). The CNN has the best performance among the three models in distinguishing A-ISs and N-Ns (AUC: 0.88, 95%CI = 0.86-0.90). The prediction scores of the A-ISs and N-ISs obtained from the all three models are statistically different from the N-Ns (p < 0.001). Futhermore, the CNN scores of the two groups (mRS > 2 and mRS ≤ 2) were significantly different (p < 0.05). Finally, Grad-CAM revealed that the V4 lead may harbor the highest probability of abnormality. CONCLUSION: Our study showed that a high proportion of post-IS ECGs harbored abnormal changes. Our CNN model can systematically assess anomalies in and prognosticate post-IS ECGs.


Subject(s)
Artificial Intelligence , Ischemic Stroke , Humans , Ischemic Stroke/diagnosis , Neural Networks, Computer , Electrocardiography , Arrhythmias, Cardiac
9.
Ecotoxicol Environ Saf ; 202: 110900, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32593095

ABSTRACT

Heavy metals such as lead (Pb), cadmium (Cd), and mercury (Hg) are representative neurotoxicological contaminants that can evoke cognitive dysfunctions. Low levels of these contaminants can be detected simultaneously in the human blood. In our previous study, behavioral performances were markedly impaired by exposure to these heavy metal mixtures (MM) at low levels. However, the aspects of cognitive functions involved are not well understood. Here, we further analyzed search strategies using a new algorithm named Morris water maze-unbiased strategy classification (MUST-C). Rat pups were co-exposed to low doses of Pb, Cd, and Hg during the embryonic and lactation stage. MM exposure at low doses, similar to those found in the general population, impaired search strategies even though their latency and path length were not affected in the Morris water maze task. MM-exposed rats preferred to use more directionless repetition strategies and less target orientation strategies than did vehicle-exposed animals in a dose-dependent manner. In addition, thionine staining and electron microscopy further revealed that MM exposure induced dose-dependent search strategy related place cell injures in the hippocampal CA1 and CA3 regions. These results demonstrate that the use of suboptimal search strategies underlies the early cognitive deficits in rats exposed to low doses of MM. The current study determined that search strategy analysis might be a novel sensitive assessment method for evaluating in the neurobehavioral toxicity.


Subject(s)
Cognitive Dysfunction/chemically induced , Environmental Pollutants/toxicity , Metals, Heavy/toxicity , Animals , Cadmium/toxicity , Cognition , Female , Hippocampus , Humans , Juvenile Hormones , Lactation , Male , Mercury/toxicity , Rats
10.
J Hazard Mater ; 388: 122081, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31958610

ABSTRACT

The heavy metals, namely lead (Pb), cadmium (Cd), and mercury (Hg), have been studied extensively in various independent studies. It has been seen that these metals are usually detected simultaneously in the human blood at low levels. However, it is unknown whether exposure to these heavy metal mixtures (MM) can induce neurological damages at these low levels. Therefore, we investigated the influence of the Pb, Cd, and Hg mixture on the nervous system in rats at exposure doses equivalent to those normally found in the human blood. After pregnant rats being exposed to MM via drinking water throughout the gestation and lactation, their offspring were followed-up till adulthood. MM caused cognitive deficits and impairments in a dose-dependent manner. Furthermore, MM disrupted dendritic spines, the structural basis of learning and memory, and induced changes in spine-related pathways. Meanwhile, we explored an early and safe way to remedy these impairments through a postnatal enriched environment. The enriched environment ameliorated MM-impaired cognitive function, synaptic plasticity, and spine-related pathways. This study demonstrated that low-dose co-exposure to Pb, Cd, and Hg can cause cognitive and synaptic plasticity deficits and timely intervention through the enriched environment has a certain corrective effect.


Subject(s)
Cognition Disorders/chemically induced , Maternal-Fetal Exchange , Metals, Heavy/toxicity , Animals , Behavior, Animal/drug effects , Brain/drug effects , Cognition/drug effects , Environment , Female , Learning/drug effects , Male , Neuronal Plasticity/drug effects , Pregnancy , Rats, Sprague-Dawley
11.
J Cell Physiol ; 235(4): 3646-3656, 2020 04.
Article in English | MEDLINE | ID: mdl-31559639

ABSTRACT

It is well known that exposure of double-stranded RNA (dsRNA) to intestine immediately induces villus damage with severe diarrhea, which is mediated by toll-like receptor 3 signaling activation. However, the role of intestinal stem cells (ISCs) remains obscure during the pathology. In the present study, polyinosinic-polycytidylic acid (poly[I:C]), mimicking viral dsRNA, was used to establish intestinal damage model. Mice were acutely and chronically exposed to poly(I:C), and ISCs in jejunum were analyzed. The results showed that the height of villus was shorter 48 hr after acute poly(I:C) exposure compared with that of controls, while chronic poly(I:C) treatment increased both villus height and crypt depth in jejunum compared with control animals. The numbers of ISCs in jejunum were significantly increased after acute and chronic poly(I:C) exposure. Poly (I:C)-stimulated ISCs have stronger capacities to differentiate into intestine endocrine cells. Mechanistically, poly(I:C) treatment increased expression of Stat1 and Axin2 in the intestinal crypt, which was along with increased expression of Myc, Bcl2, and ISC proliferation. These findings suggest that dsRNA exposure could induce ISC proliferation to ameliorate dsRNA-induced intestinal injury.


Subject(s)
Intestinal Mucosa/growth & development , Poly I-C/pharmacology , Proto-Oncogene Proteins c-myc/genetics , Stem Cells/drug effects , Animals , Apoptosis/drug effects , Axin Protein/genetics , Cell Proliferation/drug effects , Gene Expression Regulation/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Jejunum/drug effects , Jejunum/growth & development , Mice , RNA, Double-Stranded/drug effects , STAT1 Transcription Factor/genetics , Signal Transduction , Toll-Like Receptor 3/genetics
12.
Med Hypotheses ; 135: 109497, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31759311

ABSTRACT

Tumor epidemiology, as well as tumor microenvironments and cancer cell signaling study, has been presented with statistical relevance of inorganic phosphate (Pi) to tumorigenesis. Although serum Pi is still not acknowledged as a clinical tumor biomarker, abnormally high Pi concentration in serum or tumor lesions is gradually recognized as a characteristic of malignancy. On the other hand, phosphate binder (e.g. La2 (CO3)3, Fosrenols) has been clinically approved to treat hyperphosphatemia, a metabolic disease characterized by a high serum phosphate level. We hypothesize that, if reducing phosphate burden comes to benefit tumor therapy, could systemic or intratumoral administration of phosphate binder effectively deprive tumor Pi concentration, and then inhibit tumor growth and metastases? From the past clinical and preclinical outcomes, we'd conclude that Pi is not only a metabolite during tumor growth but also a force to trigger tumor progression and metastases. Two types of cancer models were developed to initiate this study. Firstly, a patient-derived xenograft mouse model of colorectal cancer was designed, where mice were administered systemically or intratumorally with lanthanum acetate (a molecular phosphate binder), and the serum or intratumoral Pi concentration levels were found to a dropdown. Secondly, a rabbit VX2 liver tumor was set up for the local-regional therapy model, where lanthanum acetate was intratumorally administered by the standard transcatheter arterial chemoembolization procedure, and it significantly reduced intratumoral Pi concentration. Therefore, Pi deprivation by phosphate binder might be a new anticancer strategy if reducing phosphate burden could effectively arrest tumor growth and delay metastatic progression.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Phosphates/pharmacology , Acetates/pharmacology , Animals , Carcinogenesis , Chelating Agents/therapeutic use , Chemoembolization, Therapeutic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Disease Progression , Hyperphosphatemia/metabolism , Lanthanum/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Neoplasms/metabolism , Rabbits
13.
Nanomedicine ; 24: 102118, 2020 02.
Article in English | MEDLINE | ID: mdl-31678180

ABSTRACT

The benefit of chemotherapy as a constituent of transcatheter arterial chemoembolization (TACE) is still in debate. Recently we have developed arsenic trioxide nanoparticle prodrug (ATONP) as a new anticancer drug, but its systemic toxicity is a big issue. In this preclinical TACE study, ATONP emulsified in lipiodol behaved as drug-eluting bead manner. Sustained release of arsenic from ATONP within occluded tumor caused very low arsenic level in plasma, avoiding the "rushing out" effect as ATO did. Correspondingly, intratumoral arsenic accumulation and inorganic phosphate deprivation were simultaneously observed, and arsenic concentration was much higher as ATONP was transarterially administered than ATO, or intravenously injected. Tumor necrosis and apoptosis were remarkably more severe in ATONP group than ATO, but no significant hepatic and renal toxicity was perceived. In brief, ATONP alleviated arsenic toxicity and boosted the therapeutic effect of TACE via Pi-activated drug sustainable release.


Subject(s)
Arsenic Trioxide , Chemoembolization, Therapeutic , Liver Neoplasms, Experimental/therapy , Prodrugs , Animals , Arsenic Trioxide/pharmacokinetics , Arsenic Trioxide/pharmacology , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Ethiodized Oil/chemistry , Ethiodized Oil/pharmacokinetics , Ethiodized Oil/pharmacology , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Rabbits
14.
Br J Pharmacol ; 177(3): 687-700, 2020 02.
Article in English | MEDLINE | ID: mdl-31648381

ABSTRACT

BACKGROUND AND PURPOSE: Damage to intestinal epithelial cells and mucosa limits the effectiveness of several anti-cancer chemotherapeutic agents but the underlying mechanism (s) remain unknown. Little is known of how enteric nervous system regulates proliferation, differentiation, impairment, and regeneration of intestinal stem cells. Here we have investigated the effects of isoprenaline on the damaged intestinal stem cells induced by chemotherapeutic treatments in mice. EXPERIMENTAL APPROACH: The effects of inhibiting sympathetic and parasympathetic nerves on intestinal stem cells were examined in male C57BL/6J mice. Protection by isoprenaline of intestinal stem cells was assessed in the presence or absence of 5-fluorouracil (5FU) or cisplatin. Cellular apoptosis, cell cycle, PI3K/Akt signalling, and NF-κB signalling in intestinal stem cells were mechanistically evaluated. KEY RESULTS: The sympathetic nerve inhibitor 6-OHDA decreased the number and function of intestinal stem cells. 5FU or cisplatin treatment damaged both intestinal stem cells and sympathetic nerves. Notably, isoprenaline accelerated the recovery of intestinal stem cells after 5FU or cisplatin treatment. This protective effect of isoprenaline on damaged intestinal stem cells was mediated by ß2 -adrenoceptors. The benefits of isoprenaline were mainly mediated by inhibiting cellular apoptosis induced by 5FU treatment, which might contribute to fine-tuning regulating NF-κB signalling pathway by isoprenaline administration. CONCLUSIONS AND IMPLICATIONS: Treatment with isoprenaline is a new approach to ameliorate the damage to intestinal stem cells following exposure to cancer chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Phosphatidylinositol 3-Kinases , Animals , Antineoplastic Agents/toxicity , Apoptosis , Intestinal Mucosa , Isoproterenol/pharmacology , Male , Mice , Mice, Inbred C57BL , Stem Cells
15.
Sci Total Environ ; 701: 134901, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31710906

ABSTRACT

Heavy metal lead (Pb) is widely distributed in the environment and can induce neurodegeneration. Accumulating evidence has shown that ryanodine receptors (RyRs) play vital roles in neurodegenerative brain. However, whether aberrant RyRs levels contribute to Pb-induced neurodegeneration has largely remained unknown. In the present study, we report the important role of elevated levels of RyRs in Pb-induced neurodegeneration. Pb was found to upregulate the levels of RyRs in the rat hippocampal tissues and rat pheochromocytoma (PC12) cells. Furthermore, exposure to Pb induced neurodegenerative cognitive impairment in rats, depressed the long-term potentiation (LTP) in the rat brain slices, increased the neuronal intracellular free calcium concentration ([Ca2+]i), inhibited the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclic adenosine 3',5'-monophosphate (cAMP) response element binding protein (CREB) as well as the expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl2), and activated the phosphorylation of extracellular regulated protein kinases (Erk) protein both in vitro and in vivo. In addition, the knockdown of RyR3 in PC12 cells significantly decreased the [Ca2+]i levels, increased the CaMKIIα and CREB phosphorylation, decrease the phosphorylation of Erk, and elongated the cognitive function-related neurite outgrowth after exposure to Pb. Moreover, treatment with a RyRs agonist showed the involvement of RyRs in Pb-induced depression in LTP in the rat brain slices. In summary, we determined that Pb-mediated upregulation of RyRs led to neurodegeneration via high levels of free calcium, depression of the calcium-dependent CaMKIIα/CREB mnemonic signaling pathway, and activation of the calcium-dependent Erk/Bcl2 apoptotic signaling pathway. These findings on the impact of Pb on the levels of RyRs could further improve our understanding of Pb-induced neurotoxicity and provide a promising molecular target to antagonize Pb-induced neurodegenerative diseases.


Subject(s)
Lead/toxicity , Neurodegenerative Diseases/chemically induced , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Signaling/drug effects , Hippocampus/metabolism , Male , Rats
16.
Environ Int ; 133(Pt B): 105192, 2019 12.
Article in English | MEDLINE | ID: mdl-31639605

ABSTRACT

The heavy metals lead (Pb), cadmium (Cd) and mercury (Hg) are common environmental pollutants that can be detected simultaneously in blood, serum, and urine samples from the general human population. However, there is limited information regarding toxicity of low-level exposure to Pb, Cd, and Hg mixtures. Our previous research showed the interaction of these three elements at low concentrations in vitro. In this study, we further evaluate early effects of low dose exposure to Pb, Cd, and Hg mixtures on the brain, heart, liver, kidney, and testicle in rats. Pregnant rats were exposed to various concentrations of heavy metal mixtures (MM) in drinking water, during gestation and lactation, and the impacts on offspring were measured at postnatal day 23. Our results showed that the concentrations of Pb, Cd, and Hg in the blood of rat pups were similar to those in the blood of the general human population. Additionally, the MM concentrations in their blood and brain significantly increased in a dose-dependent manner. MM exposure caused histopathological changes in the brain, liver, kidney and testicle. Statistically significant increases in liver CYP450 and PON1, kidney KIM1, and decrease in testicle SDH were observed. In the brain, significant increases were detected in oxidative stress, intracellular free calcium, and cell apoptosis. Further neurobehavioral testing revealed that MM exposure caused dose-dependent impairments in learning and memory as well as sensory perception. MM exposure also disrupted synapse remodeling, which may be associated with pathways involved in dendritic spine growth, maintenance, and elimination. These results suggested that exposure to Pb, Cd, and Hg mixtures, at human environmental exposure related levels, caused damage to multiple organs as well as impairments in neurobehavioral functions of rats. Our findings emphasize the need to control and regulate potential sources of heavy metal contamination.


Subject(s)
Cadmium/toxicity , Environmental Pollutants/toxicity , Lactation , Lead/toxicity , Mercury/toxicity , Animals , Environmental Exposure , Female , Pregnancy , Rats , Rats, Sprague-Dawley
17.
Environ Pollut ; 251: 699-707, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31108303

ABSTRACT

We conducted a meta-analysis to evaluate the association between prenatal cadmium (Cd) exposure and birth weight. PubMed, Embase, China National Knowledge Infrastructure (CNKI), and Wanfang databases were searched for studies published before March 2019. We used a model-based method, standardizing effect size from linear regression models to include a maximum number of studies during our quantitative evaluations. As a result, 11 articles from the general population, containing 10 birth cohorts and one cross-sectional study, were included. Our meta-analysis demonstrated that a 50% increase of maternal urine Cd (UCd) would be associated with a 6.15 g decrease in neonatal birth weight (ß = -6.15 g, 95% CI: -10.81, -1.49) as well as a 50% increase of maternal blood Cd (BCd) would be associated with an 11.57 g decrease (ß = -11.57 g; 95% CI: -18.85, -4.30). Stratified analysis of UCd data indicated that the results of female newborns were statistically significant (ß = -8.92 g, 95% CI: -17.51, -0.34), as was the first trimester (ß = -11.34 g, 95% CI: -19.54, -3.14). Furthermore, increased UCd levels were associated with a higher rate of low birth weight (LBW) risk (OR = 1.12, 95% CI: 1.03, 1.22). This meta-analysis demonstrated that elevated maternal Cd levels are associated with decreased birth weight and higher LBW risk.


Subject(s)
Birth Weight/drug effects , Cadmium/toxicity , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/etiology , Cadmium/blood , Cadmium/urine , China/epidemiology , Female , Humans , Infant, Newborn , Odds Ratio , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology
18.
Front Physiol ; 10: 228, 2019.
Article in English | MEDLINE | ID: mdl-30984007

ABSTRACT

Recurrent liver cancer after surgery is often treated with radiotherapy, which induces liver damage. It has been documented that activation of the TGF-ß and NF-κB signaling pathways plays important roles in irradiation-induced liver pathologies. However, the significance of mTOR signaling remains undefined after irradiation exposure. In the present study, we investigated the effects of inhibiting mTORC1 signaling on irradiated livers. Male C57BL/6J mice were acutely exposed to 8.0 Gy of X-ray total body irradiation and subsequently treated with rapamycin. The effects of rapamycin treatment on irradiated livers were examined at days 1, 3, and 7 after exposure. The results showed that 8.0 Gy of irradiation resulted in hepatocyte edema, hemorrhage, and sinusoidal congestion along with a decrease of ALB expression. Exposure of mice to irradiation significantly activated the mTORC1 signaling pathway determined by pS6 and p-mTOR expression via western blot and immunostaining. Transient inhibition of mTORC1 signaling by rapamycin treatment consistently accelerated liver recovery from irradiation, which was evidenced by decreasing sinusoidal congestion and increasing ALB expression after irradiation. The protective role of rapamycin on irradiated livers might be mediated by decreasing cellular apoptosis and increasing autophagy. These data suggest that transient inhibition of mTORC1 signaling by rapamycin protects livers against irradiation-induced damage.

19.
Toxicology ; 419: 55-64, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30905827

ABSTRACT

Lead is widely distributed in the environment and has become a global public health issue. It is well known that lead exposure induces not only neurodevelopmental toxicity but also neurodegenerative diseases, with learning and memory impairment in the later stage. However, the molecular mechanisms remain elusive. The present study investigated the effects of early life and lifetime lead exposure on cognition and identified the molecular mechanisms involved in aged rats. The results herein demonstrated that the lead concentration in peripheral blood and brain tissues in aged rats was significantly increased in a lead dose-dependent manner. High-dose lead exposure caused cognitive functional impairment in aged rats, concomitant with a longer escape latency and a lower frequency of crossing the platform via Morris water maze testing compared to those in the control and low-dose lead exposure groups. Importantly, neuron functional defects were still observed even in early life lead exposure during the prenatal and weaning periods in aged rats. The neurotoxicity induced by lead exposure was morphologically evidenced by a recessed nuclear membrane, a swollen endoplasmic reticulum, and mitochondria in the neurons. Mechanistically, the exposure of aged rats to lead resulted in increasing free calcium concentration, reactive oxygen species, and apoptosis in the hippocampal neurons. Lead exposure increased RyR3 expression and decreased the levels of p-CaMKIIα/CaMKIIα and p-CREB/CREB in the hippocampus of aged rats. These findings indicated that early life lead exposure-induced cognition disorder was irreversible in aged rats. Lead-induced neurotoxicity might be related to the upregulation of RyR3 expression and high levels of intracellular free calcium with increasing lead concentration in injured neurons.


Subject(s)
Behavior, Animal , Calcium Signaling , Cognition , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Lead Poisoning, Nervous System, Adult/metabolism , Neurons/metabolism , Organometallic Compounds , Ryanodine Receptor Calcium Release Channel/metabolism , Age Factors , Animals , Apoptosis , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Escape Reaction , Female , Hippocampus/pathology , Hippocampus/physiopathology , Lead Poisoning, Nervous System, Adult/physiopathology , Lead Poisoning, Nervous System, Adult/psychology , Male , Maze Learning , Neurons/pathology , Phosphorylation , Rats, Sprague-Dawley , Reaction Time , Reactive Oxygen Species/metabolism
20.
Occup Environ Med ; 76(3): 151-156, 2019 03.
Article in English | MEDLINE | ID: mdl-30661027

ABSTRACT

OBJECTIVES: A significant number of researches have evidenced that occupational lead (Pb) exposure increased risks of cardiovascular disease. However, evidences about the potential effects of Pb on the cardiac conduction system are sparse and inconclusive. Besides, ryanodine receptors (RyRs) induced dysfunction of cardiac excitation contraction coupling which is considered to be one of the mechanisms in cardiovascular diseases. Therefore, we examined the association between occupational Pb exposure and ECG conduction abnormalities, as well as RyRs in Pb-induced ECG abnormalities. METHODS: We investigated 529 Pb smelter workers, and measured blood lead (BPb), zinc protoporphyrin (ZPP), ECG outcomes and RyR expression levels. Based on BPb levels, the workers were divided into three groups: the BPb not elevated group, the BPb elevated group and the Pb poisoning group. Descriptive and multivariable analyses were performed. RESULTS: Compared with the BPb not elevated group, the Pb poisoning group had a higher incidence of high QRS voltage, and a lower level of RyR1 gene expression (p<0.05). Further unconditional multivariable logistic regression analyses showed that high QRS voltage was positively related to BPb (OR=1.045, 95% CI 1.014 to 1.078) and inversely associated with RyR1 expression (OR=0.042, 95% CI 0.002 to 0.980) after adjusting for potential confounders. In addition, multiple linear regression analyses showed that the QTc interval was positively associated with ZPP (ß=0.299, 95% CI 0.130 to 0.468) after adjusting for potential confounders. CONCLUSIONS: Our study provided evidences that occupational exposure to Pb may be associated with worse ECG outcomes (high QRS voltage), which might be related to decreased levels of RyR1.


Subject(s)
Lead Poisoning/genetics , Lead Poisoning/physiopathology , Lead/blood , Occupational Exposure , Ryanodine Receptor Calcium Release Channel/genetics , Adult , Cross-Sectional Studies , Electrocardiography , Heart Conduction System/physiopathology , Humans , Lead Poisoning/blood , Linear Models , Logistic Models , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Male , Multivariate Analysis , Protoporphyrins/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...