Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Transl Med ; 11(2): 64, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36819568

ABSTRACT

Background: The mitochondrial unfolded protein response (UPRmt) is a mitochondria stress response, which exerts a crucial role in maintaining mitochondrial proteostasis during stress. However, there is no bibliometric analyses systematically studied this field which could comprehensively review research trends, evaluate publication performances and provide future perspectives. Methods: Articles investigating UPRmt published between 1994 and 2021 were downloaded from the Core Collection of the Web of Science (WOS). CiteSpace and VOSviewer bibliometric software were applied for bibliometric and visual analyses. Results: A total of 2,073 papers researching UPRmt were retrieved. According to the published number of papers, the field of UPRmt research has gone through its infancy (after 2000) and rapid growth (after 2021) phases. The United States and China contributed the most to UPRmt research. Regarding the distribution of institutions, Harvard University was the most influential institution. The most prolific authors are Johan Auwerx and CM Haynes. PLoS One is the most extensive journal in the field of UPRmt research, while the Cell Death and Differentiation journal had the greatest impact among the most-authored journals. Moreover, biochemistry/molecular biology, and cell biology are the largest subject areas. UPRmt research is mainly categorized as UPRmt, transcription, endoplasmic reticulum (ER) stress, lipotoxicity, mitophagy, inflammation, skeletal muscle, hypoxia, apoptosis, mitochondrial dysfunction, neurodegeneration, mitochondrial permeability transition, and integrated stress response. Conclusions: At present, research on UPRmt is booming. Further strengthening the cooperation and exchanges between countries, institutions, and authors in the future will surely promote the development of this field.

2.
Neurochem Res ; 48(3): 956-966, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36402927

ABSTRACT

Ferroptosis is characterized by excessive accumulation of iron and lipid peroxides, which are involved in ischemia, reperfusion-induced organ injury, and stroke. Propofol, an anesthetic agent, has neuroprotective effects due to its potent antioxidant, anti-ischemic, and anti-inflammatory properties. However, the relationship between propofol and ferroptosis is still unclear. In the current study, we elucidated the role of ferroptosis in the neuroprotective effect of propofol in mouse brains subjected to cerebral ischemia reperfusion injury (CIRI). Ferroptosis was confirmed by Western blotting assays, transmission electron microscopy, and glutathione assays. Propofol regulated Nrf2/Gpx4 signaling, enhanced antioxidant potential, inhibited the accumulation of lipid peroxides in CIRI-affected neurons, and significantly reversed CIRI-induced ferroptosis. Additionally, Gpx4 inhibitor RSL3 and Nrf2 inhibitor ML385 attenuated the effects of propofol on antioxidant capacity, lipid peroxidation, and ferroptosis in CIRI-affected neurons. Our data support a protective role of propofol against ferroptosis as a cause of cell death in mice with CIRI. Propofol protected against CIRI-induced ferroptosis partly by regulating the Nrf2/Gpx4 signaling pathway. These findings may contribute to the development of future therapies targeting ferroptosis induced by CIRI.


Subject(s)
Propofol , Reperfusion Injury , Animals , Mice , Propofol/pharmacology , Propofol/therapeutic use , NF-E2-Related Factor 2 , Antioxidants , Lipid Peroxides , Reperfusion Injury/drug therapy , Disease Models, Animal , Signal Transduction , Cell Death
3.
CNS Neurosci Ther ; 29(1): 306-316, 2023 01.
Article in English | MEDLINE | ID: mdl-36284438

ABSTRACT

BACKGROUND: Exposure to anesthesia leads to extensive neurodegeneration and long-term cognitive deficits in the developing brain. Caenorhabditis elegans also shows persistent behavioral changes during development after exposure to anesthetics. Clinical and rodent studies have confirmed that altered expression of the regulators of G protein signaling (RGS) in the nervous system is a factor contributing to neurodegenerative and psychological diseases. Evidence from preclinical studies has suggested that RGS controls drug-induced plasticity, including morphine tolerance and addiction. This study aimed to observe the effect of propofol exposure in the neurodevelopmental stage on learning and memory in the L4 stage and to study whether this effect is related to changes in rgs-3 expression. METHODS: Caenorhabditis elegans were exposed to propofol at the L1 stage, and learning and memory abilities were observed at the L4 stage. The expression of rgs-3 and the nuclear distribution of EGL-4 were determined to study the relevant mechanisms. Finally, RNA interference was performed on rgs-3-expressing cells after propofol exposure. Then, we observed their learning and memory abilities. RESULTS: Propofol time- and dose-dependently impaired the learning capacity. Propofol induced a decline in non-associative and associative long-term memory, rgs-3 upregulation, and a failure of nuclear accumulation of EGL-4/PKG in AWC neurons. Inhibition of rgs-3 could alleviate the propofol-induced changes. CONCLUSION: Inhibition of the expression of rgs-3 alleviated propofol-induced learning and memory deficits in Caenorhabditis elegans.


Subject(s)
Caenorhabditis elegans Proteins , Propofol , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Propofol/toxicity , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Learning , Signal Transduction , Cyclic GMP-Dependent Protein Kinases/metabolism
4.
Brain Res ; 1797: 148116, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36209898

ABSTRACT

Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.

5.
Biomed Res Int ; 2020: 8978704, 2020.
Article in English | MEDLINE | ID: mdl-32420378

ABSTRACT

Hypoxia-induced neuroinflammation typically causes neurological damage and can occur during stroke, neonatal hypoxic-ischemic encephalopathy, and other diseases. Propofol is widely used as an intravenous anesthetic. Studies have shown that propofol has antineuroinflammatory effect. However, the underlying mechanism remains to be fully elucidated. Thus, we aimed to investigate the beneficial effects of propofol against hypoxia-induced neuroinflammation and elucidated its potential cellular and biochemical mechanisms of action. In this study, we chose cobalt chloride (CoCl2) to establish a hypoxic model. We found that propofol decreased hypoxia-induced proinflammatory cytokines (TNFα, IL-1ß, and IL-6) in BV2 microglia, significantly suppressed the excessive production of reactive oxygen species, and increased the total antioxidant capacity and superoxide dismutase activity. Furthermore, propofol attenuated the hypoxia-induced decrease in mitochondrial membrane potential andy 2 strongly inhibited protein expression of nuclear factor-kappa B (NF-κB) subunit p65 and hypoxia inducible factor-1α (Hif-1α) in hypoxic BV2 cells. To investigate the role of NF-κB p65, specific small interfering RNA (siRNA) against NF-κB p65 were transfected into BV2 cells, followed by exposure to hypoxia for 24 h. Hypoxia-induced Hif-1α production was downregulated after NF-κB p65 silencing. Further, propofol suppressed Hif-1α expression by inhibiting the upregulation of NF-κB p65 after exposure to hypoxia in BV2 microglia. In summary, propofol attenuates hypoxia-induced neuroinflammation, at least in part by inhibiting oxidative stress and NF-κB/Hif-1α signaling.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Microglia/metabolism , Oxidative Stress/drug effects , Propofol/pharmacology , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Animals , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Line , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Microglia/pathology , Oxidative Stress/genetics , Signal Transduction/genetics , Transcription Factor RelA/genetics
6.
Front Cell Dev Biol ; 8: 622424, 2020.
Article in English | MEDLINE | ID: mdl-33575257

ABSTRACT

Single-nucleotide polymorphisms (SNPs) of microRNA (miRNA) (miRSNP) are SNPs located on miRNA genes or miRNA target sites, which have been supposed to be involved in the development of central nervous system diseases by interfering with miRNA-mediated regulatory functions. However, the association of miRSNP with post-stroke depression (PSD) has not been well-investigated. In this study, we collected 54 PSD risk genes via manual literature-mining and integrated PSD-related risk pathways based on multiple public databases. Furthermore, we systematically screened candidate functional miRSNPs for PSD and integrated a miRSNP-based PSD-associated pathway network, which included 99 miRNAs that target 12 PSD risk pathways. We also reviewed the association between three risk pathways and PSD pathogenetic mechanism thoroughly. Combining literature mining and network analysis, our results proposed an underlying mechanism of "miRSNP → miRNA → risk gene → pathway" axis effects on PSD pathogenesis, especially for rs28457673 (miR-15/16/195/424/497 family) → IGF1R → hsa04010 (MAPK signaling pathway). Our studies revealed a functional role in genetic modifier at the system level in the pathogenesis of PSD, which might provide further information for the miRSNP studies in PSD.

7.
PLoS One ; 9(3): e92443, 2014.
Article in English | MEDLINE | ID: mdl-24667167

ABSTRACT

BACKGROUND AND PURPOSE: Reperfusion after transient cerebral ischemia causes severe damage to mitochondria; however, little is known regarding the continuous change in mitochondrial biogenesis during reperfusion. Mitochondrial biogenesis causes an increase in the individual mitochondrial mass of neurons and maintains their aerobic set-point in the face of declining function. The aim of this study was to examine mitochondrial biogenesis in the cortex during reperfusion following focal cerebral ischemia. METHODS: Male Wistar rats were subjected to transient focal cerebral ischemia. The relative amount of cortical mitochondrial DNA was analyzed using quantitative real-time PCR at 0 h, 24 h, 72 h, and 7 d after reperfusion. Three critical transcriptional regulators of mitochondrial biogenesis were measured by semi-quantitative reverse-transcription PCR. The protein expression of cytochrome C oxidase subunits I and IV was detected by Western blotting. RESULTS: Evidence of increased mitochondrial biogenesis was observed after reperfusion. The cortical mitochondrial DNA content increased after 24 h, peaked after 72 h, and maintained a high level for 7 d. The cortical expression of three critical genes for the transcriptional regulation of mitochondrial biogenesis, namely, peroxisome proliferator-activated receptor coactivator-1α, nuclear respiratory factor-1, and mitochondrial transcription factor A, also increased at 24 h and 72 h. The expression of peroxisome proliferator-activated receptor coactivator-1α returned to the baseline level at 7 d, but two other factors maintained higher levels compared with the controls. Moreover, the expression of cytochrome C oxidase subunits I and IV was increased in the cortex. CONCLUSIONS: These results indicate that reperfusion increased mitochondrial biogenesis following focal cerebral ischemia, and this tendency was exacerbated as the reperfusion time was extended. Reperfusion-induced mitochondrial biogenesis was mediated through up-regulation of critical transcriptional regulators of mitochondrial biogenesis.


Subject(s)
Brain Ischemia/metabolism , Mitochondrial Turnover/physiology , Reperfusion , Animals , Blotting, Western , Brain Ischemia/genetics , Brain Ischemia/pathology , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Male , RNA, Messenger/genetics , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...