Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 134: 108-116, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37673525

ABSTRACT

Nowadays, ozone contamination becomes dominant in air and thus challenges the research and development of cost-effective catalyst. In this study, metal doped Cu2O catalysts are synthesized via reduction of Cu2+ by ascorbic acid in base solutions containing doping metal ions. The results show that compared with pure Cu2O, the Mg2+ and Fe2+ dopants enhance the O3 removal efficiency while Ni2+ depresses the activity. In specific, Mg-Cu2O shows high O3 removal efficiency of 88.4% in harsh environment of 600,000 mL/(g·hr) space velocity and 1500 ppmV O3, which is one of the highest in the literature. Photoluminescence and electron paramagnetic spectroscopy characterization shows higher concentration of crystal defects induced by the Mg2+ dopants, favoring the O3 degradation. The in-situ diffuse reflectance Fourier transform infrared spectroscopy shows the intermediate species in the O3 degradation process change from O22- dominant of pure Cu2O to O2- dominant of Mg-Cu2O, which would contribute to the high activity. All these results show the promising prospect of the Mg-Cu2O for highly efficiency O3 removal.


Subject(s)
Nanoparticles , Ozone , Ascorbic Acid , Metals , Spectroscopy, Fourier Transform Infrared
2.
Inorg Chem ; 62(23): 9178-9189, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37235631

ABSTRACT

Nowadays, it is still elusive and challenging to discover the active sites of cobalt (Co) cations in different coordination structures, though Co-based oxides show their great potency in catalytic ozone elimination for air cleaning. Herein, different Co-based oxides are controllably synthesized including hexagonal wurtzite CoO-W with Co2+ in tetrahedral coordination (CoTd2+) and CoAl spinel with dominant CoTd2+, cubic rock salt CoO-R with Co2+ in octahedral coordination (CoOh2+), MgCo spinel with dominant Co3+ in octahedral coordination (CoOh3+), and Co3O4 with mixed CoTd2+ and CoOh3+. The valences are proved by X-ray photoelectron spectroscopy, and the coordinations are verified by X-ray absorption fine structure analysis. The ozone decomposition performances are CoOh3+ ∼ CoOh2+ ≫ CoTd2+, and CoOh3+ and CoOh2+ show a lower apparent activation energy of ∼42-44 kJ/mol than CoTd2+ (∼55 kJ/mol). In specific, MgCo shows the highest decomposition efficiency of 95% toward 100 ppm ozone at a high space velocity of 1,200,000 mL/gh, which still retains at 80% after a long-term running of 36 h at room temperature. The high activity is explained by the d-orbital splitting in the octahedral coordination, favoring the electron transfer in ozone decomposition reactions, which is also verified by the simulation. These results show the promising prospect of the coordination tuning of Co-based oxides for highly active ozone decomposition catalysts.

3.
Nanoscale ; 14(42): 15724-15734, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36194173

ABSTRACT

The regulation of oxygen vacancies and Ru species using metal-organic frameworks was synergically adopted in a rational design to upgrade Ru/TiO2 catalysts, which are highly active for the catalytic oxidation of dichloromethane (DCM) with less undesired byproducts. In this work, Ru/M-TiO2 and Ru/N-TiO2 catalysts were synthesized by the pyrolysis of MIL-125 and NH2-MIL-125 incorporated with Ru, the existence of Ru nanoclusters and nanoparticles was detected by XAFS, respectively, and the catalytic performance was analyzed comprehensively. Complete oxidation of DCM was obtained at ∼290 °C over Ru/M-TiO2 and Ru/N-TiO2 catalysts, while Ru/N-TiO2 showed quite less monochloromethane (MCM) and higher CO2 yields, and better dechlorination capacity in oxidation. The distinction comes down to that the easier desorption of chlorine could be achieved over Ru4+ which act as the main activated adsorption sites for DCM in Ru/N-TiO2, compared to oxygen vacancies that serve as the main dissociation sites in Ru/M-TiO2. Additionally, Ru/N-TiO2 exhibited superior stability and excellent resilience in moisture. An in situ DRIFTS experiment further indicated the different DCM catalytic degradation process as well as the reaction mechanism over the as-prepared catalysts.

4.
ACS Omega ; 4(2): 4221-4232, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459630

ABSTRACT

This paper develops a novel ultrasonic spray-assisted solvothermal (USS) method to synthesize wrapped ZnO/reduced graphene oxide (rGO) nanocomposites with a Schottky junction for gas-sensing applications. The as-obtained ZnO/rGO-x samples with different graphene oxide (GO) contents (x = 0-1.5 wt %) are characterized by various techniques, and their gas-sensing properties for NO2 and other VOC gases are also evaluated. The results show that the USS-derived ZnO/rGO samples exhibit high NO2-sensing property at low operating temperatures (e.g., 70-130 °C) because of their high specific surface area and porous structures when compared with the ZnO/rGO sample obtained by the traditional precipitation method. The content of rGO shows an obvious effect on their NO2-sensing properties, and the ZnO/rGO-0.5 sample has a high response of 62 operating at 130 °C, three times that of pure ZnO. The detection limit of the ZnO/rGO-0.5 sensor to NO2 is as low as 10 ppb under the present test condition. In addition, the ZnO/rGO-0.5 sensor shows a highly selective response to NO2 gas when compared with organic vapors and other inflammable or toxic gases. The theoretical and experimental analyses indicate that the enhancement in NO2-sensing performance of the ZnO/rGO sensor is attributed to the formation of wrapped ZnO/rGO Schottky junctions.

SELECTION OF CITATIONS
SEARCH DETAIL
...