Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36144674

ABSTRACT

Due to the body's systemic distribution of photothermal agents (PTAs), and to the imprecise exposure of lasers, photothermal therapy (PTT) is challenging to use in treating tumor sites selectively. Striving for PTT with high selectivity and precise treatment is nevertheless important, in order to raise the survival rate of cancer patients and lower the likelihood of adverse effects on other body sections. Here, we studied cold atmospheric plasma (CAP) as a supplementary procedure to enhance selectivity of PTT for cancer, using the classical photothermic agent's gold nanostars (AuNSs). In in vitro experiments, CAP decreases the effective power of PTT: the combination of PTT with CAP at lower power has similar cytotoxicity to that using higher power irradiation alone. In in vivo experiments, combination therapy can achieve rapid tumor suppression in the early stages of treatment and reduce side effects to surrounding normal tissues, compared to applying PTT alone. This research provides a strategy for the use of selective PTT for cancer, and promotes the clinical transformation of CAP.


Subject(s)
Neoplasms , Photochemotherapy , Plasma Gases , Cell Line, Tumor , Gold/therapeutic use , Humans , Neoplasms/drug therapy , Photochemotherapy/methods , Phototherapy , Photothermal Therapy , Plasma Gases/pharmacology , Plasma Gases/therapeutic use
2.
Vet J ; 214: 24-31, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27387722

ABSTRACT

Cytosolic nucleotide oligomerisation domain (NOD)-like receptors play an important role in host defence against infection. Reduced NOD1 expression has been observed in dysfunctional neutrophils derived from periparturient cattle known to be most susceptible to coliform mastitis. However, whether impairment of NOD1 suppresses the immune responses of bovine neutrophils during bacterial infections remains unknown. Crude (phenol extracted) lipopolysaccharide (cLPS), which often contains other immunostimulatory molecules, including NOD1 agonist, is known to induce almost the whole bacterial response. This study was conducted to explore the role of NOD1/nuclear factor (NF)-κB pathway in the cytokine and functional responses of bovine neutrophils challenged with Escherichia coli-derived cLPS. Freshly isolated blood neutrophils from healthy heifers were pre-incubated for 2 h with ML130, a selective inhibitor of NOD1/NF-κB pathway. Cells were then exposed to cLPS for additional 4 h. Inhibition of the NOD1/NF-κB pathway resulted in a decrease in cLPS-induced phosphorylation of the inhibitor of NF-κBα (IκBα) in neutrophils. Impairment of the NOD1/NF-κB pathway tended to down-regulate mRNA levels of pro-inflammatory cytokines interleukin (IL)-1ß and tumour necrosis factor (TNF)-α, chemokines IL-8 and C-X-C motif ligand 2 (CXCL2), and adhesion molecules CD11b and CD62L, in cLPS-challenged cells. Functional analyses showed that blocking the NOD1/NF-κB pathway inhibited neutrophil migration and phagocytic killing capacity, and promoted neutrophil death upon cLPS stimulation. The data presented here demonstrate that activation of NOD1/NF-κB pathway contributes to the functional responses of neutrophils to cLPS.


Subject(s)
Cattle/immunology , Cell Movement , Cytokines/immunology , Lipopolysaccharides/pharmacology , Neutrophils/immunology , Phagocytosis , Animals , Cell Survival , Escherichia coli/chemistry , Gene Expression Regulation , NF-kappa B/genetics , NF-kappa B/metabolism , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Signal Transduction/immunology
3.
Vet Immunol Immunopathol ; 168(1-2): 68-76, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26321220

ABSTRACT

Neutrophils use a broad array of pattern recognition receptors to sense and respond to invading pathogens and are important in the early control of acute bacterial infections. Nucleotide-binding oligomerizing domain-1 (NOD1) is a cytoplasmic receptor involved in recognizing bacterial peptidoglycan. Reduced neutrophil NOD1 expression has been reported in periparturient dairy cows. The aim of this study was to investigate the role of NOD1 signalling in the early responses of bovine neutrophils to bacterial infections. Blood neutrophils from healthy heifers were preincubated for 2h with ML130, a selective inhibitor of NOD1-dependent nuclear factor-κB (NF-κB) activation. Thereafter, cells were cultured with live Escherichia coli for additional 30 min or subjected to Boyden chamber cell migration assay with E. coli in the lower chamber. Results showed that ML130 inhibited E. coli-induced NF-κB nuclear translocation. There was an indication, although not significant, that ML130 down-regulated gene expression of proinflammatory cytokines interleukin (IL)-1ß and tumour necrosis factor (TNF)-α, chemokines IL-8 and C-X-C motif ligand 2 (CXCL2), and adhesion molecule CD62L, in E. coli-challenged neutrophils. Flow cytometry-based Annexin V staining revealed a considerable increase in neutrophil survival upon E. coli infection, an effect that was attenuated in the presence of ML130. Additionally, inhibition of NOD1/NF-κB signalling resulted in reduced migration of neutrophils to E. coli, and impaired phagocytosis, intracellular bacterial killing and reactive oxygen species production by neutrophils. These results indicate that NOD1/NF-κB pathway plays a crucial role in modulating neutrophil responses that are important for early control of infections. Approaches aiming at restoring neutrophil NOD1 function could be beneficial for prevention or treatment of coliform mastitis.


Subject(s)
Cattle/immunology , Escherichia coli/immunology , Escherichia coli/pathogenicity , NF-kappa B/immunology , Neutrophils/immunology , Neutrophils/microbiology , Nod1 Signaling Adaptor Protein/immunology , Active Transport, Cell Nucleus/drug effects , Animals , Cattle/blood , Cell Movement , Female , In Vitro Techniques , Mastitis, Bovine/immunology , NF-kappa B/metabolism , Neutrophils/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Phagocytosis , Signal Transduction/drug effects , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...