Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 10(9): uhad147, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37691964

ABSTRACT

MicroTom has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development, metabolism, and plant-microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth, e.g. arbuscular mycorrhizal symbiosis and fruit development. Additionally, non-coding RNAs, including miRNAs, lncRNAs, and circRNAs were also identified, together with their potential targets. Interacting networks between different types of non-coding RNAs (miRNA-lncRNA), and non-coding RNAs and genes (miRNA-mRNA and lncRNA-mRNA) were constructed as well. Our results and data will provide valuable information for the study of organ differentiation and development of this important fruit. Lastly, we established a database (http://eplant.njau.edu.cn/microTomBase/) with genomic and transcriptomic data, as well as details of gene co-expression and interacting networks on MicroTom, and this database should be of great value to those who want to adopt MicroTom as a model plant for research.

2.
Plant J ; 113(5): 1021-1034, 2023 03.
Article in English | MEDLINE | ID: mdl-36602036

ABSTRACT

Saururus chinensis, an herbaceous magnoliid without perianth, represents a clade of early-diverging angiosperms that have gone through woodiness-herbaceousness transition and pollination obstacles: the characteristic white leaves underneath inflorescence during flowering time are considered a substitute for perianth to attract insect pollinators. Here, using the newly sequenced S. chinensis genome, we revisited the phylogenetic position of magnoliids within mesangiosperms, and recovered a sister relationship for magnoliids and Chloranthales. By considering differentially expressed genes, we identified candidate genes that are involved in the morphogenesis of the white leaves in S. chinensis. Among those genes, we verified - in a transgenic experiment with Arabidopsis - that increasing the expression of the "pseudo-etiolation in light" gene (ScPEL) can inhibit the biosynthesis of chlorophyll. ScPEL is thus likely responsible for the switches between green and white leaves, suggesting that changes in gene expression may underlie the evolution of pollination strategies. Despite being an herbaceous plant, S. chinensis still has vascular cambium and maintains the potential for secondary growth as a woody plant, because the necessary machinery, i.e., the entire gene set involved in lignin biosynthesis, is well preserved. However, similar expression levels of two key genes (CCR and CAD) between the stem and other tissues in the lignin biosynthesis pathway are possibly associated with the herbaceous nature of S. chinensis. In conclusion, the S. chinensis genome provides valuable insights into the adaptive evolution of pollination in Saururaceae and reveals a possible mechanism for the evolution of herbaceousness in magnoliids.


Subject(s)
Arabidopsis , Magnoliopsida , Saururaceae , Phylogeny , Pollination/genetics , Lignin , Magnoliopsida/genetics
3.
Article in English | MEDLINE | ID: mdl-30877893

ABSTRACT

A methionine methyl ester-modified coumarin derivative was designed and synthesized, which could discriminate Cu2+ from other metal ions in HEPES buffer (10 mM, pH 7.4)/CH3CN (40:60, V/V). The detection limit of WM toward Cu2+ was 1.84 × 10-7 M, which was lower than the concentration of Cu2+ in drinking water suggested by WHO and EPA. And the proposed coordination mode exhibiting the interaction between WM and Cu2+ was studied by UV-Vis, fluorescence spectrum, ESI-MS and FT-IR. Based on the fluorescent reversibility of WM, WM was considered as a molecular logic gate and molecular keypad lock. In addition, the test strips and the silica gel plates prepared from the solution of WM also demonstrate the favorable selectivity toward Cu2+.


Subject(s)
Copper/analysis , Coumarins/chemical synthesis , Drinking Water/analysis , Fluorescent Dyes/chemical synthesis , Methionine/analogs & derivatives , Water Pollutants, Chemical/analysis , Cations, Divalent/analysis , Colorimetry/methods , Coumarins/chemistry , Fluorescent Dyes/chemistry , Methionine/chemical synthesis , Methionine/chemistry , Models, Molecular , Silica Gel/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...