Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(22): 10441-10448, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37818981

ABSTRACT

The low performance of sensors based on an all-dielectric metasurface limits their application compared to metallic counterparts. Here, for the first time, an all-dielectric BIC (bound states in the continuum) metasurface is employed for highly sensitive phase interrogation refractive index sensing. The proposed sensor is well analyzed, fabricated, and characterized. Experimentally, a high-performance BIC-based microfluidic sensing chip with a Q factor of 1200 is achieved by introducing symmetry breaking. A refractive index sensor with high figure of merit of 418 RIU-1 is demonstrated, which is beneficial to the phase interrogation. Notably, we measure a record phase interrogation sensitivity of 2.7 × 104 deg/RIU to the refractive index, thus enabling the all-dielectric BIC to rival the refractive index detection capabilities of metal-based sensors such as surface plasmon resonance. This scheme establishes a pivotal role of the all-dielectric metasurface in the field of ultrahigh sensitivity sensors and opens possibilities for trace detection in biochemical analysis and environment monitoring.

2.
Appl Opt ; 61(5): B363-B374, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35201160

ABSTRACT

In this review paper, we first provide comprehensive tutorials on two classical methods of polygon-based computer-generated holography: the traditional method (also called the fast-Fourier-transform-based method) and the analytical method. Indeed, other modern polygon-based methods build on the idea of the two methods. We will then present some selective methods with recent developments and progress and compare their computational reconstructions in terms of calculation speed and image quality, among other things. Finally, we discuss and propose a fast analytical method called the fast 3D affine transformation method, and based on the method, we present a numerical reconstruction of a computer-generated hologram (CGH) of a 3D surface consisting of 49,272 processed polygons of the face of a real person without the use of graphic processing units; to the best of our knowledge, this represents a state-of-the-art numerical result in polygon-based computed-generated holography. Finally, we also show optical reconstructions of such a CGH and another CGH of the Stanford bunny of 59,996 polygons with 31,724 processed polygons after back-face culling. We hope that this paper will bring out some of the essence of polygon-based computer-generated holography and provide some insights for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...