Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Anat Histol Embryol ; 46(1): 17-24, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26786325

ABSTRACT

The ultrastructural and cytochemical properties of peripheral blood cells of Gymnocypris eckloni were investigated by transmission electron microscopy and a range of cytochemical techniques to provide clear insight into the structure and function of blood cells from this fish. Ultrastructurally, erythrocytes, leucocytes (neutrophils, eosinophils, lymphocytes, monocytes), thrombocytes and plasma cells were identified in the peripheral blood of G. eckloni. The most special ultrastructural characteristics of blood cells in this fish were that neutrophils exhibited only one type of cytoplasmic granules containing an eccentric, spherical or oval electron-dense core, and eosinophils presented two types of granules with non-uniform electronic density and without crystalloids in their cytoplasm. Neutrophils, eosinophils, lymphocytes, monocytes and thrombocytes were positive for periodic acid-Schiff and α-naphthyl acetate esterase staining. Intense peroxidase positive staining was observed in neutrophils and monocytes, but not in eosinophils, lymphocytes and thrombocytes. Neutrophils, eosinophils and monocytes were stained positively for acid phosphatase, whereas lymphocytes and thrombocytes did not stain. Leucocytes and thrombocytes were negative for alkaline phosphatase and Sudan black B staining. Erythrocytes were negative for all cytochemical staining. The cytochemical and ultrastructural features of peripheral blood cells of G. eckloni were similar to those of other fish species. However, some important differences were identified in G. eckloni.


Subject(s)
Blood Platelets/ultrastructure , Carps/blood , Erythrocytes/ultrastructure , Lymphocytes/ultrastructure , Microscopy, Electron, Transmission/veterinary , Monocytes/ultrastructure , Neutrophils/ultrastructure , Acid Phosphatase/metabolism , Animals , Blood Platelets/cytology , Erythrocytes/cytology , Histocytochemistry/veterinary , Lymphocytes/cytology , Monocytes/cytology , Neutrophils/cytology , Staining and Labeling/veterinary
2.
J Neurosci Res ; 90(5): 945-54, 2012 May.
Article in English | MEDLINE | ID: mdl-22497022

ABSTRACT

To survive, cells must rapidly repair (seal) plasmalemmal damage. Cytosolic oxidation has been shown to increase cell survival in some cases and produce cell death in other protocols. An antioxidant (melatonin; Mel) has been reported to decrease the probability of sealing plasmalemmal damage. Here we report that plasmalemmal damage produces cytosolic oxidation, as assayed by methylene blue (MB) color change in rat B104 hippocampal cells. Plasmalemmal sealing is affected by duration of Ca²âº deprivation and length of exposure to, and concentration of, oxidizing agents such as H2O2 and thimerosal (TH). Cytosolic oxidation by 10 µM to 50 mM H2O2 or 100 µM to 2 mM TH increases the probability of Ca²âº-dependent plasmalemmal sealing, whereas higher concentrations of H2O2 decrease sealing probability and also damage uninjured cells. We also show that antioxidants (Mel, MB) or reducing agents (dithiothreitol) decrease sealing. Proteins, such as protein kinase A, SNAP-25, synaptobrevin, and N-ethylmaleimide-sensitive factor (previously reported to enhance sealing in other pathways), also enhance sealing in this oxidation pathway. In brief, our data show that plasmalemmal damage produces cytosolic oxidation that increases the probability of plasmalemmal sealing, which is strongly correlated with cell survival in other studies. Our results may provide new insights into the etiology and treatment of oxidation-dependent neurodegenerative disorders, such as Parkinson's, Huntington's, and Alzheimer's diseases.


Subject(s)
Axotomy , Cell Membrane/physiology , Cytosol/physiology , Neurites/metabolism , Wound Healing/physiology , Animals , Antioxidants/pharmacology , Calcium/metabolism , Cell Line, Tumor , Cell Membrane/drug effects , Cytosol/drug effects , Dose-Response Relationship, Drug , Drug Interactions , Hydrogen Peroxide/pharmacology , Neurites/drug effects , Neuroblastoma/pathology , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Protein Kinase Inhibitors/pharmacology , Rats , Time Factors , Wound Healing/drug effects
3.
J Neurosci Res ; 90(5): 955-66, 2012 May.
Article in English | MEDLINE | ID: mdl-22302626

ABSTRACT

Mammalian neurons and all other eukaryotic cells endogenously repair traumatic injury within minutes by a Ca²âº-induced accumulation of vesicles that interact and fuse with each other and the plasmalemma to seal any openings. We have used uptake or exclusion of extracellular fluorescent dye to measure the ability of rat hippocampal B104 cells or rat sciatic nerves to repair (seal) transected neurites in vitro or transected axons ex vivo. We report that endogenous sealing in both preparations is enhanced by Ca²âº-containing solutions and is decreased by Ca²âº-free solutions containing antioxidants such as dithiothreitol (DTT), melatonin (MEL), methylene blue (MB), and various toxins that decrease vesicular interactions. In contrast, the fusogen polyethylene glycol (PEG) at 10-50 mM artificially seals the cut ends of B104 cells and rat sciatic axons within seconds and is not affected by Ca²âº or any of the substances that affect endogenous sealing. At higher concentrations, PEG decreases sealing of transected axons and disrupts the plasmalemma of intact cells. These PEG-sealing data are consistent with the hypothesis that lower concentrations of PEG directly seal a damaged plasmalemma. We have considered these and other data to devise a protocol using a well-specified series of solutions that vary in tonicity, Ca²âº, MB, and PEG content. These protocols rapidly and consistently repair (PEG-fuse) rat sciatic axons in completely cut sciatic nerves in vivo rapidly and dramatically to restore long-lasting morphological continuity, action potential conduction, and behavioral functions.


Subject(s)
Axons/drug effects , Cell Membrane/drug effects , Polyethylene Glycols/therapeutic use , Sciatic Neuropathy/drug therapy , Wound Healing/drug effects , Animals , Antioxidants/therapeutic use , Axotomy , Calcium/metabolism , Cell Line, Tumor , Cell Membrane/physiology , Disease Models, Animal , Dithiothreitol/therapeutic use , Dose-Response Relationship, Drug , In Vitro Techniques , Melatonin/therapeutic use , Methylene Blue , Neuroblastoma/pathology , Polyethylene Glycols/pharmacology , Rats , Rats, Sprague-Dawley , Sciatic Neuropathy/pathology
4.
J Neurosci Res ; 90(5): 967-80, 2012 May.
Article in English | MEDLINE | ID: mdl-22302646

ABSTRACT

Behavioral function lost in mammals (including humans) after peripheral nerve severance is slowly (weeks to years) and often poorly restored by 1-2-mm/day, nonspecifically directed outgrowths from proximal axonal stumps. To survive, proximal stumps must quickly repair (seal) plasmalemmal damage. We report that, after complete cut- or crush-severance of rat sciatic nerves, morphological continuity, action potential conduction, and behavioral functions can be consistently (>98% of trials), rapidly (minutes to days), dramatically (70-85% recovery), and chronically restored and some Wallerian degeneration prevented. We assess axoplasmic and axolemmal continuity by intra-axonal dye diffusion and action potential conduction across the lesion site and amount of behavioral recovery by Sciatic Functional Index and Foot Fault tests. We apply well-specified sequences of solutions containing FDA-approved chemicals. First, severed axonal ends are opened and resealing is prevented by hypotonic Ca²âº-free saline containing antioxidants (especially methylene blue) that inhibit plasmalemmal sealing in sciatic nerves in vivo, ex vivo, and in rat B104 hippocampal cells in vitro. Second, a hypotonic solution of polyethylene glycol (PEG) is applied to open closely apposed (by microsutures, if cut) axonal ends to induce their membranes to flow rapidly into each other (PEG-fusion), consistent with data showing that PEG rapidly seals (PEG-seals) transected neurites of B104 cells, independently of any known endogenous sealing mechanism. Third, Ca²âº-containing isotonic saline is applied to induce sealing of any remaining plasmalemmal holes by Ca²âº-induced accumulation and fusion of vesicles. These and other data suggest that PEG-sealing is neuroprotective, and our PEG-fusion protocols that repair cut- and crush-severed rat nerves might rapidly translate to clinical procedures.


Subject(s)
Behavior, Animal/drug effects , Methylene Blue/therapeutic use , Microsurgery/methods , Polyethylene Glycols/therapeutic use , Recovery of Function/physiology , Sciatic Neuropathy , Analysis of Variance , Animals , Disease Models, Animal , Electromyography , Evoked Potentials, Motor/drug effects , Fluorescent Dyes , Neural Conduction/drug effects , Neural Conduction/physiology , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Sciatic Neuropathy/drug therapy , Sciatic Neuropathy/physiopathology , Sciatic Neuropathy/surgery , Time Factors , Video Recording
5.
Mol Endocrinol ; 10(12): 1605-16, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8961270

ABSTRACT

The promoter of the human C3 gene has been shown to be responsive to stimulation by both estrogen and tamoxifen-activated estrogen receptor (ER) in transcriptional assays reconstituted in mammalian cells. Using a series of deletions and point mutations, we have determined that the agonist activity of these two compounds was dependent upon the direct interaction of ER with each of three estrogen response elements (EREs) contained within this promoter. One of these sequences, ERE1 resembles the canonical vitellogenin A2-ERE whereas the other two, ERE2 and ERE3, do not display significant homology to known EREs. Using gene transfer studies it was shown that these sequences are necessary and sufficient for ER-mediated transcription. Interestingly, using in vitro receptor/DNA-binding assays we demonstrated that neither ERE1, ERE2, or ERE3 alone formed high-affinity complexes with purified ER; however when a promoter fragment containing all three sequences was used, specific, high-affinity ER-DNA interactions were observed. It was not surprising, therefore, that, when assayed individually on a heterologous promoter, these sequences function as weak EREs but together they act in a synergistic manner to create a strong ER-dependent enhancer. It has been suggested that tamoxifen mediates its partial agonist activity through AP-1 at target promoters. However, the fact that purified ER can bind directly to the estrogen-responsive sequences within the C3 promoter, and that tamoxifen activity on this promoter is unaffected by AP-1 coexpression, indicates that at least on some promoters tamoxifen can manifest partial agonist activity through a classical ER/ ERE- mediated mechanism.


Subject(s)
Complement C3/genetics , Complement C3/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Tamoxifen/pharmacology , Binding Sites , Complement C3/drug effects , Electrophoresis/methods , Enhancer Elements, Genetic , Estradiol/pharmacology , Estrogen Antagonists/pharmacology , Gene Expression Regulation , Humans , Promoter Regions, Genetic , Receptors, Estrogen/agonists , Receptors, Estrogen/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Sequence Deletion , Transcription Factor AP-1/drug effects , Transcription Factor AP-1/metabolism , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...