Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Free Radic Biol Med ; 208: 807-819, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37774803

ABSTRACT

Excessive oxidative stress will cause significant injury to osteoblasts, serving as one major pathological mechanism of osteoporosis. Neuroligin-3 (NLGN3) is a postsynaptic cell adhesion protein and is expressed in the bone. We here explored its potential activity against hydrogen peroxide (H2O2)-induced oxidative injury in cultured osteoblasts. In primary murine and human osteoblasts, NLGN3 stimulation dose-dependently induced Akt, Erk1/2 and S6K activation. NLGN3 pretreatment ameliorated H2O2-induced cytotoxicity and death in osteoblasts. Moreover, H2O2-induced reactive oxygen species (ROS) production and oxidative injury were alleviated with NLGN3 pretreatment in cultured osteoblasts. Further studies showed that NLGN3 activated Nrf2 signaling cascade and induced Nrf2 protein Serine-40 phosphorylation, Keap1-Nrf2 dissociation, Nrf2 protein stabilization and nuclear translocation in osteoblasts. NLGN3 also increased antioxidant response element (ARE) activity and induced expression of Nrf2-ARE-dependent genes (HO1, GCLC and NQO1) in osteoblasts. Moreover NLGN3 mitigated osteoblast oxidative injury by dexamethasone or sodium fluoride (NaF). Nrf2 cascade activation is essential for NLGN3-induced cytoprotective activity in osteoblasts. Nrf2 shRNA or knockout (KO) abolished NLGN3-induced osteoblast cytoprotection against H2O2. Contrarily forced Nrf2 cascade activation by Keap1 KO mimicked NLGN3-induced anti-oxidative activity in murine osteoblasts. Importantly, NLGN3-induced Serine-40 phosphorylation and Nrf2 cascade activation were blocked by an Akt inhibitor MK-2206 or by Akt1 shRNA. Importantly, Akt inhibition, Akt1 silencing or Nrf2 S40T mutation largely inhibited NLGN3-induced osteoblast cytoprotection against H2O2. At last, we showed that NLGN3 mRNA and protein expression was significantly downregulated in necrotic bone tissues of dexamethasone-taken patients. Taken together, NLGN3 activated Akt-dependent Nrf2 cascade to protect osteoblasts from oxidative stress.


Subject(s)
NF-E2-Related Factor 2 , Proto-Oncogene Proteins c-akt , Humans , Animals , Mice , Kelch-Like ECH-Associated Protein 1/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Apoptosis , Oxidative Stress , Reactive Oxygen Species/metabolism , Dexamethasone/pharmacology , RNA, Small Interfering/metabolism , Osteoblasts/metabolism , Serine/metabolism
2.
Ying Yong Sheng Tai Xue Bao ; 32(6): 2209-2216, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34212627

ABSTRACT

The abundance of denitrifying functional genes plays a key role in driving the soil nitrous oxide (N2O) emission potential. Nitrite reductase genes (nirK and nirS) and nitrous oxide reductase genes (nosZ I and nosZ II) are the dominant denitrifying funtional genes. In this study, real-time quantitative PCR was conducted to evaluate the effects of 32-year imbalanced fertilization and lime and gypsum additions on the abundances of nirK, nirS, nosZ I and nosZ II genes in an Ultisol at Yingtan, Jiangxi Province. We further explored the underlying driving factors. The results showed that, compared with the balanced fertilization treatment, fertilization without phosphorus (P) signifi-cantly decreased the abundances of nirK, nirS, nosZ I and nosZ II genes. Fertilization without nitrogen (N) significantly reduced the abundances of nirK, nosZ I and nosZ II, but did not affect the abundance of nirS. Fertilization without potassium (K) did not affect the abundances of all denitri-fying functional genes. Results of stepwise regression analysis and random forest analysis showed that soil pH was a key environmental factor affecting the abundances of nosZ I and nosZ II. The application of lime or lime + gypsum significantly increased soil pH, which subsequently increased the abundances of nosZ II and nosZ II/nosZ I by 150%-231% and 127%-155%, respectively. Our results suggested that application of lime or lime + gypsum favored nosZ II more than nosZ I in upland Ultisols, which might enhance the relative importance of nosZ II in N2O reduction. Overall, fertilization without P would reduce denitrifying gene abundances, while the application of lime or lime + gypsum enriched nosZ II and increased ratio of nosZ II/nosZ I, which might be beneficial for reducing N2O emission potential in the Ultisols.


Subject(s)
Calcium Sulfate , Soil Microbiology , Calcium Compounds , China , Denitrification , Fertilization , Nitrous Oxide/analysis , Oxides , Soil
3.
J Orthop Surg Res ; 16(1): 421, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215299

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) participate in regulation of gene transcription, but little is known about the correlation among resveratrol and lncRNAs. This study aimed to identify and validate the key lncRNAs in resveratrol protect against IL-1ß-treated chondrocytes. METHODS: In this experiment, high-throughput sequencing technique was performed to identify the differentially expressed lncRNAs, miRNAs, and mRNAs between IL-1ß-treated chondrocytes with or not resveratrol. Moreover, gene ontology and KEGG pathway of the differentially expressed genes were carried out by R software. Then, lncRNA-miRNA-mRNA network was constructed by Cytoscape software. Venn diagram was performed to identify the potentially target miRNAs of LINC00654. Then, real-time polymerase chain reaction (RT-PCR) was performed to validate the most significantly differentially expressed lncRNAs. RESULTS: Totally, 1016 differentially expressed lncRNAs were identified (493 downregulated) between control and resveratrol-treated chondrocytes. Totally, 75 differentially expressed miRNAs were identified (downregulated = 54, upregulated = 21). Totally, 3308 differentially expressed miRNAs were identified (downregulated = 1715, upregulated = 1593). GO (up) were as follows: skin development, response to organophosphorus. GO (down) mainly included visual perception, single fertilization, and sensory perception of smell. KEGG (up) were as follows: TNF signaling pathway and TGF-beta signaling pathway. KEGG (down) were as follows: viral protein interaction with cytokine and cytokine receptor. We identified that LINC00654 and OGFRL1 were upregulated in resveratrol-treated chondrocytes. However, miR-210-5p was downregulated in resveratrol-treated chondrocytes. CONCLUSION: In sum, the present study for the first time detected the differential expressed lncRNAs involved in resveratrol-treated chondrocytes via employing bioinformatic methods.


Subject(s)
Chondrocytes/drug effects , Interleukin-1beta/adverse effects , Protective Agents/pharmacology , RNA, Long Noncoding/pharmacology , Resveratrol/pharmacology , Computational Biology , Down-Regulation , Gene Ontology , Gene Regulatory Networks , Humans , MicroRNAs/pharmacology , RNA, Messenger/pharmacology , Signal Transduction/drug effects , Up-Regulation
4.
Ying Yong Sheng Tai Xue Bao ; 31(11): 3729-3736, 2020 Nov.
Article in Chinese | MEDLINE | ID: mdl-33300723

ABSTRACT

Fertilization affects soil nitrogen cycling and nitrous oxide (N2O) emissions, which are mainly driven by microbes. A 32-year field experiment was conducted to investigate the effects of chemical fertilizers and their combination with organic materials on the abundance of denitrifying functional genes (nirS, nirK, nosZ I and nosZ II) in Ultisol. The treatments comprised no fertilizer (CK), chemical fertilizer, chemical fertilizer+peanut straw, chemical fertilizer+rice straw, chemical fertilizer+radish and chemical fertilizer+pig manure. Compared with the single chemical fertilizer treatment, soil pH and organic carbon content increased in the chemical fertilizer plus organic material treatments, with chemical fertilizer+pig manure having the strongest effect. Long-term fertilization did not affect the abundance of nirK gene, but significantly altered the nirS gene abundance. Compared to CK, long-term chemical fertilizer application increased the abundance of nirS gene by 426%. However, partial replacement of chemical fertilizer by organic materials decreased the abundance of nirS gene. The abundance of nosZ I gene was one order of magnitude higher than that of nosZ II, indicating the domination of nosZ I in the acidic Ultisol. Long-term fertilization did not affect the abundance of nosZ II, whereas chemical fertilizer+pig manure increased the abundance of nosZ I by 138%. Results of stepwise regression analysis showed that available phosphorus content was the primary factor regulating the abundance of nosZ I gene, whereas the abundance of the nosZ II gene was mainly regulated by nitrate content. Moreover, the lowest (nirS+nirK)/(nosZ I+nosZ II) value in the chemical fertilizer+pig manure treatment indicated that long-term manure application might reduce N2O emission potential in Ultisols.


Subject(s)
Fertilizers , Soil Microbiology , Animals , Fertilization , Fertilizers/analysis , Manure , Soil , Swine
5.
Food Sci Nutr ; 8(9): 5182-5191, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32994978

ABSTRACT

Using retinoic acid to inducer, we successfully established a rat model of secondary osteoporosis and verified the preventive effect of Lactobacillus fermentum ZS40 (ZS40) on secondary osteoporosis. Serum biochemical indicators showed that ZS40 can effectively slow down bone resorption caused by retinoic acid, increase blood content of calcium, phosphorus, bone alkaline phosphatase, bone gla protein, and insulin-like growth factor 1, and decrease blood content of tartrate-resistant acid phosphatase (TRAP) 5b. qRT-PCR results showed that ZS40 could upregulate mRNA expressions of ß-catenin, Wnt10b, Lrp5, Lrp6, Runx2, ALP, RANKL, and OPG, and downregulate mRNA expression of DKK1, RANK, TRACP, and CTSK in the rats' spinal cord. Results following TRAP staining showed that ZS40 could slow down retinoic acid-induced formation of osteoclasts. Micro-CT results showed that ZS40 could reduce Tb.Sp, increase BV/TV, Tb.N, Tb.Th, and ultimately increase bone mineral density of rats in vivo. These findings indicate that ZS40 might have a potential role in preventing retinoic acid-induced secondary osteoporosis in vivo.

6.
J Orthop Surg Res ; 15(1): 424, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32948212

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a regular age-related disease that affects millions of people. Resveratrol (RSV) is a flavonoid with a stilbene structure with different pharmacological effects. The purpose of the experiment was to evaluate the protective role of RSV against the human OA chondrocyte injury induced by interleukin-1ß (IL-1ß). METHODS: Chondrocytes were isolated from OA patients and identified by type II collagen, safranin O staining, and toluidine blue staining. Differentially expressed genes in chondrocytes treated RSV were identified by RNA sequencing. Kyoto encyclopedia of genes and genomes (KEGG) pathway as well as gene ontology (GO) were further conducted through Metascape online tool. A cell counting kit-8 (CCK-8) assay was applied to discover the viability of chondrocytes (6, 12, 24, and 48 µM). Many genes associated with inflammation and matrix degradation are evaluated by real-time PCR (RT-PCR) as well as western blot (WB). The mechanism of RSV for protecting IL-1ß induced chondrocytes injury was further measured through immunofluorescence and WB assays. RESULTS: A total of 845 differentially expressed genes (upregulated = 499, downregulated = 346) were found. These differentially expressed genes mainly enriched into negative regulation of catabolic process, autophagy, and cellular catabolic process, intrinsic apoptotic, apoptotic, and regulation of apoptotic signaling pathway, cellular response to abiotic stimulus, external stimuli, stress, and radiation. These differentially expressed genes were obviously enriched in NF-kB signaling pathway. RSV at the concentration of 48 µM markedly weakened the viability of the cells after 24 h of treatment (87% vs 100%, P < 0.05). No obvious difference was observed between the 6, 12, and 24 µM groups (106% vs 100%, 104% vs 100%, 103% vs 100%, P > 0.05). RSV (24 µM) also markedly depressed the levels of PGE2 and NO induced by IL-1ß by 25% and 29% respectively (P < 0.05). Our experiment pointed out that RSV could dramatically inhibit the inflammatory response induced by IL-1ß, including the MMP-13, MMP-3, and MMP-1 in human OA chondrocytes by 50%, 35%, and 33% respectively. On the other hand, RSV inhibited cyclooxygenase-2 (COX-2), matrix metalloproteinase-1 (MMP-1), MMP-3, MMP-13, and inducible nitric oxide synthase (iNOs) expression (P < 0.05), while increased collagen-II and aggrecan levels (P < 0.05). From a mechanistic perspective, RSV inhibited the degradation of IκB-α as well as the activation of nuclear factor-kappa B (NF-κB) induced by IL-1ß. CONCLUSION: In summary, RSV regulates the signaling pathway of NF-κB, thus inhibiting inflammation and matrix degradation in chondrocytes. More studies should be focused on the treatment efficacy of RSV for OA in vivo.


Subject(s)
Chondrocytes/drug effects , Chondrocytes/pathology , Interleukin-1beta/adverse effects , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Resveratrol/pharmacology , Resveratrol/therapeutic use , Signal Transduction/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Matrix Metalloproteinases/metabolism , Osteoarthritis/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Mol Cell Biochem ; 460(1-2): 113-121, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31313024

ABSTRACT

Sustained dexamethasone (Dex) treatment could induce secondary osteoporosis, osteonecrosis, or even bone fractures. Dex can induce potent cytotoxicity in cultured human osteoblasts. The aim of this study was to test the potential role of microRNA-7 (miR-7), which targets the epidermal growth factor receptor (EGFR), in Dex-treated human osteoblasts. In OB-6, hFOB1.19, and primary human osteoblasts, miR-7 depletion by a lentiviral antagomiR-7 construct (LV-antagomiR-7) increased EGFR expression and downstream Akt activation, protecting cells from Dex-induced viability reduction, cell death, and apoptosis. In contrast, forced overexpression of miR-7 by a lentiviral miR-7 construct (LV-miR-7) inhibited EGFR expression and Akt activation, potentiating Dex-induced cytotoxicity in OB-6, hFOB1.19, and primary human osteoblasts. EGFR is the primary target of miR-7 in human osteoblasts. Luciferase activity of the EGFR 3-untranslated region was enhanced by LV-antagomiR-7, but decreased by LV-miR-7 in OB-6 cells. Further, LV-antagomiR-7-induced osteoblast cytoprotection against Dex was abolished by the EGFR inhibitors AG1478 and PD153035. Moreover, neither LV-antagomiR-7 nor LV-miR-7 was functional in EGFR-KO OB-6 cells. We also show that miR-7 is upregulated in the necrotic femoral head tissues of Dex-administered patients, correlating with EGFR downregulation. Together, we conclude that miR-7 inhibition protects human osteoblasts from Dex via activation of EGFR signaling.


Subject(s)
Cytoprotection , Dexamethasone/pharmacology , ErbB Receptors/metabolism , MicroRNAs/antagonists & inhibitors , Osteoblasts/metabolism , Signal Transduction , Cell Death/drug effects , Enzyme Activation , Humans , MicroRNAs/metabolism , Osteoblasts/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
8.
Cell Physiol Biochem ; 51(1): 31-45, 2018.
Article in English | MEDLINE | ID: mdl-30439702

ABSTRACT

BACKGROUND/AIMS: Dexamethasone (Dex) induces injuries to human osteoblasts. In this study, we tested the potential role of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (Lnc-MALAT1) in this process. MATERIALS: Two established human osteoblastic cell lines (OB-6 and hFOB1.19) and primary human osteoblasts were treated with Dex. Lnc-MALAT1 expression was analyzed by quantitative real-time polymerase chain reaction assay. Cell viability, apoptosis, and death were tested by the MTT assay, histone-DNA assay, and trypan blue staining assay, respectively. AMP-activated protein kinase (AMPK) signaling was evaluated by western blotting and AMPK activity assay. RESULTS: Lnc-MALAT1 expression was downregulated by Dex treatment in the established osteoblastic cell lines (OB-6 and hFOB1.19) and primary human osteoblasts. The level of Lnc-MALAT1 was decreased in the necrotic femoral head tissues of Dex-administered patients. In osteoblastic cells and primary human osteoblasts, forced overexpression of Lnc-MALAT1 using a lentiviral vector (LV-MALAT1) inhibited Dex-induced cell viability reduction, cell death, and apoptosis. Conversely, transfection with Lnc-MALAT1 small interfering RNA aggravated Dex-induced cytotoxicity. Transfection with LV-MALAT1 downregulated Ppm1e (protein phosphatase, Mg2+/ Mn2+-dependent 1e) expression to activate AMPK signaling. Treatment of osteoblasts with AMPKα1 short hairpin RNA or dominant negative mutation (T172A) abolished LV-MALAT1-induced protection against Dex-induced cytotoxicity. Furthermore, LV-MALAT1 induced an increase in nicotinamide adenine dinucleotide phosphate activity and activation of Nrf2 signaling. Dex-induced reactive oxygen species production was significantly attenuated by LV-MALAT1 transfection in osteoblastic cells and primary osteoblasts. CONCLUSION: Lnc-MALAT1 protects human osteoblasts from Dex-induced injuries, possibly via activation of Ppm1e-AMPK signaling.


Subject(s)
Dexamethasone/pharmacology , RNA, Long Noncoding/metabolism , Signal Transduction/drug effects , AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Cells, Cultured , Dexamethasone/therapeutic use , Down-Regulation/drug effects , Femur Head Necrosis/drug therapy , Femur Head Necrosis/metabolism , Femur Head Necrosis/pathology , Humans , Mitochondria/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Protein Phosphatase 2C/metabolism , RNA Interference , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism
9.
Int J Clin Exp Pathol ; 11(1): 333-341, 2018.
Article in English | MEDLINE | ID: mdl-31938116

ABSTRACT

Rheumatoid arthritis (RA) is an immune-mediated disease that causes chronic inflammation of the joints and involves CD4+ T cell activation. In RA, CD4+ T cells are the main drivers of disease initiation and the perpetuation of the damaging inflammatory process. In the present study, we investigated the role of Lysine-specific histone demethylase 1 (LSD1) in RA. The frequency of LSD1-positive CD4+ T cells in the synovial fluid (SF) of active RA patients was higher than that of inactive RA patients. In CD4+ T cells isolated from SF of active RA patients, LSD1 downregulation significantly increased cell proliferation, as shown by MTT assay. LSD1 knockdown also significantly increased the production of IFN-γ and IL-17, and increased that of IL-10, as determined by ELISA and qRT-PCR aasay. In CD4+ T cells isolated from SF of inactive RA patients, LSD1 was overexpressed by LSD1 plasmid transfection. As expected, LSD1 overexpression resulted in an opposite effect on cell proliferation and the production of cytokines, including IFN-γ, IL-17 and IL-10. LSD1 was downregulated in RA mouse by lenti-vector infection. As expected, LSD1 knockdown in vivo significantly alleviated the disease severity and increased the levels of anti-collagen II antibodies. LSD1 downregulation in the early stage was more effective to ameliorate disease severity. Our data suggested the potential therapeutic role of LSD1 in RA patients.

10.
Oncotarget ; 8(2): 3226-3236, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27911275

ABSTRACT

AMP-activated protein kinase (AMPK) activation could protect osteoblasts from dexamethasone (Dex). This study aims to provoke AMPK activation via microRNA downregulation of its negative regulator protein kinase C ζ (PKCζ). Results show that microRNA-25-5p (miR-25-5p) targets PKCζ's 3' untranslated regions (UTRs). Forced-expression of miR-25 downregulated PKCζ and activated AMPK in human osteoblastic cells (OB-6 and hFOB1.19 lines), which thereafter protected cells from Dex. Reversely, expression of antagomiR-25, the miR-25 inhibitor, upregulated PKCζ and inhibited AMPK activation, exacerbating Dex damages. Notably, PKCζ shRNA knockdown similarly activated AMPK and protected osteoblastic cells from Dex. AMPK activation was required for miR-25-induced osteoblastic cell protection. AMPKα shRNA or dominant negative mutation almost completely blocked miR-25-induced cytoprotection against Dex. Further studies showed that miR-25 expression increased NADPH activity and suppressed Dex-induced oxidative stress in osteoblastic cells. Such effects by miR-25 were abolished with AMPKα knockdown or mutation. Significantly, miR-25-5p level was increased in patients' necrotic femoral head tissues, which was correlated with PKCζ downregulation and AMPK hyper-activation. These results suggest that miR-25-5p targets PKCζ and protects osteoblastic cells from Dex possibly via activating AMPK signaling.


Subject(s)
Dexamethasone/pharmacology , Gene Expression Regulation , MAP Kinase Signaling System/drug effects , MicroRNAs/genetics , Osteoblasts/drug effects , Osteoblasts/metabolism , Protein Kinase C/genetics , RNA Interference , Apoptosis/drug effects , Cell Line , Gene Silencing , Humans , Osteonecrosis/genetics , Osteonecrosis/metabolism , Reactive Oxygen Species/metabolism
11.
Oncotarget ; 7(47): 77978-77986, 2016 Nov 22.
Article in English | MEDLINE | ID: mdl-27793001

ABSTRACT

AMPK activation in monocytes could suppress lipopolysaccharide (LPS)-induced tissue-damaging TNFa production. We are set to provoke AMPK activation via microRNA ("miRNA") downregulating its phosphatase Ppm1e. In human U937 and THP-1 monocytes, forced expression of microRNA-135b-5p ("miR-135b-5p") downregulated Ppm1e and activated AMPK signaling. Further, LPS-induced TNFα production in above cells was dramatically attenuated. Ppm1e shRNA knockdown in U937 cells also activated AMPK and inhibited TNFα production by LPS. AMPK activation is required for miR-135b-induced actions in monocytes, AMPKα shRNA knockdown or T172A dominant negative mutation almost abolished miR-135b-5p's suppression on LPS-induced TNFα production. Significantly, miR-135b-5p inhibited LPS-induced reactive oxygen species (ROS) production, NFκB activation and TNFα mRNA expression in human macrophages. AMPKα knockdown or mutation again abolished above actions by miR-135b-5p. We conclude that miR-135b-5p expression downregulates Ppm1e to activate AMPK signaling, which inhibits LPS-induced TNFα production via suppressing ROS production and NFκB activation.


Subject(s)
MicroRNAs/biosynthesis , Protein Phosphatase 2C/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , AMP-Activated Protein Kinases/metabolism , Down-Regulation , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/enzymology , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , Protein Phosphatase 2C/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , U937 Cells
12.
Oncotarget ; 7(43): 70613-70622, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27661114

ABSTRACT

Activation of AMP-activated protein kinase (AMPK) could potently protect osteoblasts/osteoblastic cells from dexamethasone (Dex). We aim to induce AMPK activation via microRNA ("miRNA") downregulation of its phosphatase Ppm1e. We discovered that microRNA-135b ("miR-135b") targets the 3' untranslated regions (UTRs) of Ppm1e. In human osteoblasticOB-6 cells and hFOB1.19 cells, forced-expression of miR-135b downregulated Ppm1e and activated AMPK signaling. miR-135b also protected osteoblastic cells from Dex. shRNA-induced knockdown of Ppm1e similarly activated AMPK and inhibited Dex-induced damages. Intriguingly, in the Ppm1e-silenced osteoblastic cells, miR-135b expression failed to offer further cytoprotection against Dex. Notably, AMPK knockdown (via shRNA) or dominant negative mutation abolished miR-135b-induced AMPK activation and cytoprotection against Dex. Molecularly, miR-135b, via activating AMPK, increased nicotinamide adenine dinucleotide phosphate (NADPH) activity and inhibited Dex-induced oxidative stress. At last, we found that miR-135b level was increased in human necrotic femoral head tissues, which was correlated with Ppm1e downregulation and AMPK activation. There results suggest that miR-135b expression downregulates Ppm1e to activate AMPK signaling, which protects osteoblastic cells from Dex.


Subject(s)
AMP-Activated Protein Kinases/genetics , Gene Expression Regulation , MicroRNAs/genetics , Osteoblasts/metabolism , Protein Phosphatase 2C/genetics , 3' Untranslated Regions/genetics , AMP-Activated Protein Kinases/metabolism , Cytoprotection/genetics , Dexamethasone/pharmacology , Down-Regulation , Glucocorticoids/pharmacology , Humans , Osteoblasts/drug effects , Osteonecrosis/genetics , Osteonecrosis/metabolism , Protein Phosphatase 2C/metabolism , RNA Interference , Signal Transduction/genetics
13.
Exp Biol Med (Maywood) ; 241(6): 658-66, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26748399

ABSTRACT

Anabolic bone accruement through osteogenic differentiation is important for the maintenance of physiological bone mass and often disrupted in various inflammatory diseases. Epigallocatechin-3-gallate, as an antioxidant and anti-inflammatory agent, has been suggested for potential therapeutic use in this context, possibly by the inhibition of bone resorption as well as the enhancement of bone formation through directly activating osteoblast differentiation. However, the reported effects of epigallocatechin-3-gallate modulating osteoblast differentiation are mixed, and the underlying molecular mechanism is still elusive. Moreover, there is limited information regarding the effects of epigallocatechin-3-gallate on osteogenic potential of mesenchymal stem cell in inflammation. Here, we examined the in vitro osteogenic differentiation of human mesenchymal stem cells. We found that the cell viability and osteoblast differentiation of human bone marrow-derived mesenchymal stem cells are significantly inhibited by inflammatory cytokine TNFα treatment. Epigallocatechin-3-gallate is able to enhance the cell viability and osteoblast differentiation of mesenchymal stem cells and is capable of reversing the TNFα-induced inhibition. Notably, only low doses of epigallocatechin-3-gallate have such benefits, which potentially act through the inhibition of NF-κB signaling that is stimulated by TNFα. These data altogether clarify the controversy on epigallocatechin-3-gallate promoting osteoblast differentiation and further provide molecular basis for the putative clinical use of epigallocatechin-3-gallate in stem cell-based bone regeneration for inflammatory bone loss diseases, such as rheumatoid arthritis and prosthetic osteolysis.


Subject(s)
Catechin/analogs & derivatives , Cell Differentiation/drug effects , Immunologic Factors/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Osteogenesis/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Catechin/metabolism , Cell Survival/drug effects , Cells, Cultured , Humans
14.
Biochem Biophys Res Commun ; 469(2): 281-7, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26631960

ABSTRACT

Long-term glucocorticoid (GC) usage may cause non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) is shown to exert potent cytotoxic effect to osteoblasts. Here, we investigated the potential activity of α-melanocyte stimulating hormone (α-MSH) against the process. Our data revealed that pretreatment of α-MSH significantly inhibited Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Melanocortin receptor 4 (MC4R) acts as the receptor of α-MSH in mediating its actions in osteoblasts. The MC4R antagonist SHU9119, or shRNA-mediated knockdown of MC4R, almost abolished α-MSH-induced activation of downstream signalings (Akt and Erk1/2) and its pro-survival effect in osteoblasts. Further studies showed that α-MSH activated MC4R downstream sphingosine kinase 1 (SphK1) and increased cellular sphingosine-1-phosphate (S1P) content in MC3T3-E1 cells and primary murine osteoblasts, which were blocked by SHU9119 or MC4R shRNAs. SphK1 inhibition by the its inhibitor N,N-dimethylsphingosine (DMS), or SphK1 knockdown by targeted-shRNAs, largely attenuated α-MSH-mediated osteoblast protection against Dex. Together, these results suggest that α-MSH alleviates Dex-induced damages to cultured osteoblasts through activating MC4R-SphK1 signaling.


Subject(s)
Dexamethasone/administration & dosage , Osteoblasts/metabolism , Osteoblasts/pathology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/administration & dosage , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drug Interactions , Mice , Osteoblasts/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology
15.
Mol Cell Biochem ; 398(1-2): 105-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25223639

ABSTRACT

Epidermal growth factor (EGF) receptor (EGFR) emerges as an essential molecule for the regulating of osteoblast cellular functions. In the current study, we explored the effect of epiregulin, a new EGFR ligand, on osteoblast functions in vitro, and studied the underlying mechanisms. We found that epiregulin-induced EGFR activation in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, epiregulin activated AKT-mammalian target of rapamycin (mTOR) and Erk-mitogen-activated protein kinase (MAPK) signalings in cultured osteoblasts, which were blocked by EGFR inhibitor AG1478 or monoclonal antibody against EGFR (anti-EGFR). Further, in primary and MC3T3-E1 osteoblasts, epiregulin promoted cell proliferation and increased alkaline phosphatase activity, while inhibiting dexamethasone (Dex)-induced cell death. Such effects by epiregulin were largely inhibited by AG1478 or anti-EGFR. Notably, AKT-mTOR inhibitors, but not Erk inhibitors, alleviated epiregulin-induced above pleiotropic functions in osteoblasts. Meanwhile, siRNA depletion of Sin1, a key component of mTOR complex 2 (mTORC2), also suppressed epiregulin-exerted effects in MC3T3-E1 cells. Together, these results suggest that epiregulin-induced pleiotropic functions in cultured osteoblasts are mediated through EGFR-AKT-mTOR signalings.


Subject(s)
Epiregulin/pharmacology , ErbB Receptors/metabolism , Osteoblasts/drug effects , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Alkaline Phosphatase/metabolism , Animals , Animals, Newborn , Blotting, Western , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Death/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dexamethasone/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , ErbB Receptors/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Mice , Osteoblasts/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Quinazolines/pharmacology , RNA Interference , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tyrphostins/pharmacology
16.
Ying Yong Sheng Tai Xue Bao ; 25(8): 2361-8, 2014 Aug.
Article in Chinese | MEDLINE | ID: mdl-25509090

ABSTRACT

Soil biota plays a key role in ecosystem functioning of red soil. Based on the long-term inorganic fertilization field experiment (25-year) in an upland red soil, the impacts of different inorganic fertilization managements, including NPK (nitrogen, phosphorus and potassium fertilizers), NPKCaS (NPK plus gypsum fertilizers), NP (nitrogen and phosphorus fertilizers), NK (nitrogen and potassium fertilizers) and PK (phosphorus and potassium fertilizers), on the assemblage of soil nematodes during the growing period of peanut were investigated. Significant differences among the treatments were observed for total nematode abundance, trophic groups and ecological indices (P < 0.01). The total nematode abundance decreased in the order of PK > NPKCaS > NPK > NP > NK. The total number of nematodes was significantly higher in NPKCaS and PK than in NPK, NP and NK except in May. Plant parasitic nematodes were the dominant trophic group in all treatments excepted in NPKCaS, and their proportion ranged between 38% and 65%. The dominant trophic group in NPKCaS was bacterivores and represented 42.1%. Furthermore, the higher values of maturity index, Wasilewska index and structure index in NPKCaS indicated that the combined application of NPK and gypsum could remarkably relieve soil acidification, resulting in a more mature and stable soil food web structure. While, that of the NK had the opposite effect. In conclusion, our study suggested that the application of both gypsum and phosphate is an effective practice to improve soil quality. Moreover, the analysis of nematode assemblage is relevant to reflect the impact of different inorganic fertilizer on the red soil ecosystem.


Subject(s)
Fertilizers , Nematoda , Soil/chemistry , Animals , Ecosystem , Nitrogen , Phosphorus , Potassium
17.
Biochem Biophys Res Commun ; 447(3): 425-30, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24727451

ABSTRACT

Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts.


Subject(s)
ErbB Receptors/metabolism , Osteoblasts/enzymology , Proto-Oncogene Proteins c-akt/metabolism , 3T3 Cells , Animals , Carrier Proteins/metabolism , Cytokines/metabolism , Enzyme Activation , ErbB Receptors/genetics , Extracellular Signal-Regulated MAP Kinases , Mice , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...