Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(12): 4403-4415, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516067

ABSTRACT

It is important to develop materials with environmental stability and long device shelf life for use in organic field-effect transistors (OFETs). The microscopic, molecular-level nature of the organic layer in OFETs is not yet well understood. The stability of geometric and electronic structures and the regulation of the external electric field (EEF) on the charge transport properties of four typical homogeneous organic semiconductors (OSCs) were investigated by density functional theory (DFT). The results showed that under the EEF, the structural changes in single-bond linked oligomers were more sensitive and complex than those of condensed molecules, and there were non-monotonic changes in their reorganization energy (λ) during charge transport under an EEF consisting of decreases and then increases (Series D). The change in λ under an EEF can be preliminarily and qualitatively determined by the change in the frontier molecular orbitals (FMOs) - the number of C-atoms with nonbonding characteristics. For single-bonded molecules, the transfer integral is basically unchanged under a low EEF, but it will greatly change at a high EEF. Because the structure and properties of the molecule will greatly change under different EEFs, the effect of an EEF should be fully considered when determining the intrinsic mobility of OSCs, which could cause a deviation 0.3-20 times in mobility. According to detailed calculations, one heterogeneous oligomer, TH-BTz, was designed. Its λ can be greatly reduced under an EEF, and the change in the energy level of FMOs can be adjusted to different degrees. This study provides a reasonable idea for verification of the experimental mobility value and also provides guidance for the directional design of stable high-mobility OSCs.

2.
Phys Chem Chem Phys ; 25(15): 10313-10324, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36987913

ABSTRACT

To date, the manipulation of intermolecular nonconjugation interactions in organic crystals is still a great challenge due to the complexity of weak intermolecular interactions. Here we designed molecules substituted by ß-methylselenyl on naphtho[1,2-b:5,6-b']dithiophene and anthra[2,3-b:6,7-b']dithiophene, respectively (anti-ß-MS-NDT, anti-ß-MS-ADT), which together with anti-ß-MS-BDT synthesized experimentally all exhibited 2D brickwork π-stacking. Moreover, their maximum molecular carrier mobilities reached 3.30 and 16.46 cm2 V-1 s-1. These results indicated that the substitution of ß-methylselenyl could be a strategy to directionally adjust the parent herringbone stacking into 2D brickwork π-stacking. Hirshfeld surface analysis and symmetry-adapted perturbation theory (SAPT) were used to investigate the nonconjugated interactions in the pitched π-stacking formed by the ß-methylthio-substituted acenedithiophene derivatives and the 2D brickwork π-stacking of the ß-methylselenyl-substituted ones; wherein, the steric hindrance caused by the introduction of the substituents promoted Csp2-Csp2⋯π interactions to replace Csp2-H⋯π to stabilize the face-to-face stacking. Moreover, by calculating the decomposition energy of the intermediate state model of the molecular stacking mode that may exist in the replacement conversion process, it was found that the energy of this intermediate state was larger than that of the actual ones, finally confirming the inevitability of the actual existence in this stacking. In addition, because of the reduction in intensity of the special vibration modes, it could be found that the ß-methylselenyl substitution showed better phonon assistance than ß-methylthio substitution in terms of dynamic disorder. This study is a further step toward fully understanding the relationship between intermolecular interactions and regulation of the molecular stacking.

3.
Phys Chem Chem Phys ; 25(1): 540-554, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36484128

ABSTRACT

2,6-Diphenyl anthracene (2,6-DPA) is a well-known anthracene derivative with high hole mobility (34 cm2 V-1 s-1) among p-type organic semiconductors (OSCs). In contrast, three 2,6-dipyridyl anthracene (2,6-DPyA) molecules (ortho-, meta-, and para-pyridyl), which are isoelectronic to 2,6-DPA showed relatively low mobility in experiments. To explore the origin of different charge transport properties and gain new inspiration on the design of novel organic semiconductor materials, the intrinsic hole transport property of 2,6-DPA and three isomeric 2,6-DPyAs were theoretically investigated and compared by quantum-chemical methodology and molecular dynamics simulation. The calculated results indicate that the intrinsic mobility of 2,6-DPyA-b (meta-) is superior to that of 2,6-DPA (12.73 vs. 3.54 cm2 V-1 s-1). Furthermore, the possibility that 2,6-DPyA-b may be strongly affected by thermal fluctuations is excluded because of the strong intermolecular C-H⋯N interactions (H-bonds). In addition, the crystal growth morphology prediction is considered in depth by the attachment energy (AE) model. The prediction results demonstrate that the strong intermolecular H-bonds in 2,6-DPyA do not facilitate the formation of a large and regular crystal face but rather the production of many grains and grain boundaries, which is not conducive to the charge carrier transport. This study reflects the paradox of the H-bond in OSCs and highlights the indispensability of the mesoscopic crystal growth morphology prediction in identifying high performance OSC materials and the establishment of the relationship between microcosmic organic molecules and macroscopic device performance.

4.
Phys Chem Chem Phys ; 23(22): 12679-12691, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34036996

ABSTRACT

High-performance organic semiconductor materials based on the small aromatic anthracene-core and its derivatives develop comparatively slowly due to the lack of a profound understanding of the influence of chemical modifications on their charge-transfer properties. Herein, the electronic properties and the charge transport characteristics of several typical anthracene-based derivatives with aryl groups substituted at the 2,6-site are systematically investigated by multi-scale simulation methods including Molecular Dynamics (MD) simulation and the full quantum nuclear tunneling model in the framework of density functional theory (DFT). To elucidate the origin of different charge transport properties of these anthracene-based materials, analysis of the molecular stacking and noncovalent intermolecular interaction caused by different substituents was carried out. The results indicate that the electron and hole injection capabilities and the air oxidation stability of the anthracene derivatives are greatly improved when the size of the aryl substituent increases. In addition, the incorporation of 2,6-site aryl substituents can inhibit the stretching vibration of the anthracene-core during charge transport, and allow molecular packing along the long axis (a-axis of DPA and BDBFAnt, and c-axis of dNaAnt) with almost no slippage, and the main transport channels remain unchanged, exhibiting more isotropic 2D transport properties. It should be emphasized that the edge-to-face dimers with smallest dihedral angles are closest to the thermally stable dimer model, with relatively larger π-orbital distributions in transmission channels (dimer 1, 2) and the largest spatial overlap, resulting in the largest hole transfer integral in DPA (Vh1/h2 = 57 meV). Although the analysis of the thermal disorder effect shows a phonon scattering effect, the maximum hole mobility of the DPA molecule is still as high as 1.5 cm2 V-1 s-1.

5.
J Phys Chem A ; 123(15): 3300-3314, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30900901

ABSTRACT

To obtain anthracene-based derivatives with electron transport behavior, two series of anthracene-based derivatives modified by trifluoromethyl groups (-CF3) and cyano groups (-CN) at the 9,10-positions of the anthracene core were studied. Their electronic structures and crystal packings were also analyzed and compared. The charge-carrier mobilities were evaluated by quantum nuclear tunneling theory based on the incoherent charge-hopping model. Our results suggest that introducing -CN groups at 9,10-positions of the anthracene core is more favorable than introducing -CF3 to maintain great planar rigidity of the anthracene skeleton, decreasing more lowest unoccupied molecular orbital energy levels (0.45-0.55 eV), reducing reorganization energies, and especially forming a tight packing motif. Eventually, the excellent electron transport materials could be obtained. The molecule 1-B in Series 1 containing -CF3 groups is an ambipolar organic semiconductor (OSC) material with a 2D transport network, and its value of µh-max/µe-max is 1.75/0.47 cm2 V-1 s-1 along different directions; 2-A and 2-C in Series 2 with -CN groups are excellent n-type OSC candidates with the maximum intrinsic mobilities of 3.74 and 2.69 cm2 V-1 s-1 along the π-π stacking direction, respectively. Besides, the Hirshfeld surface and quantum theory of atoms in molecules analyses were applied to reveal the relationship between noncovalent interactions and crystal stacking.

6.
Phys Chem Chem Phys ; 21(6): 3044-3058, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30672532

ABSTRACT

It is very important to analyse the most advantageous connection style for quinoidal thiophene derivatives, which are used in n-type organic semiconductor transport materials. In the present work, the charge transport properties of three series of quinoidal thiophene derivatives, oligothiophene (series A), thienothiophene (series B) and benzothiophene (series C), are systematically investigated by employing full quantum charge transfer theory combined with kinetic Monte-Carlo simulation. The single crystal structures of the molecules we had constructed were predicted using the USPEX program combined with density functional theory (DFT) and considering the dispersion corrected. Our theoretical results expounded how the different connection styles, including oligo-, thieno-, and benzo-thiophene in the quinoidal thiophenes derivatives, effectively tune their electronic structures, and revealed how their intermolecular interactions affect the molecular packing patterns and hence their charge transport properties by symmetry-adapted perturbation theory (SAPT). In the meantime we also elucidated the role of end-cyano groups in noncovalent interactions. Furthermore, it is clarified that quinoidal thiophene derivatives show excellent carrier transport properties due to their optimal molecular stacking motifs and larger electronic couplings besides their low energy gap. In addition, our theoretical results demonstrate that quinoidal oligothiophene derivatives (n = 3-5) with more thiophene rings will have ambipolar transport properties, so quinoidal thienothiophene and benzothiophene derivatives should be promising alternatives as n-type OSCs. When we focused only on the electronic transport properties in the three series of molecules, quinoidal benzothiophene derivatives were slightly better than quinoidal oligothiophene or thienothiophene derivatives.

7.
J Am Chem Soc ; 141(8): 3589-3596, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30698433

ABSTRACT

Herein we report the synthesis, crystal structures, and semiconductor properties of new derivatives of bisnaphtho[2',3':3,4]cyclobut[1,2- b:1',2'- i]anthracene (BNCBA). It is found that the π-π stacking of BNCBA in single crystals can be largely modified by alkyl substituting groups of different lengths. In particular, the tetrahexyl derivative exhibits π-π stacking with an unusual zigzag arrangement. The variation of molecular packing also leads to a change in charge transport characteristics as found from the theoretical calculation of mobility on the basis of single-crystal structures. All of these BNCBA derivatives function as p-type semiconductors in solution-processed thin film transistors, and the tetrahexyl derivative exhibits a field effect mobility as high as 2.9 cm2/(V s).

8.
Adv Mater ; 30(38): e1803467, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30066472

ABSTRACT

Molecular engineering of tetraazapentacene with different numbers of fluorine and chlorine substituents fine-tunes the frontier molecular orbitals, molecular vibrations, and π-π stacking for n-type organic semiconductors. Among the six halogenated tetraazapentacenes studied herein, the tetrachloro derivative (4Cl-TAP) in solution-processed thin-film transistors exhibits electron mobility of 14.9 ± 4.9 cm2 V-1 s-1 with a maximum value of 27.8 cm2 V-1 s-1 , which sets a new record for n-channel organic field-effect transistors. Computational studies on the basis of crystal structures shed light on the structure-property relationships for organic semiconductors. First, chlorine substituents slightly decrease the reorganization energy of the tetraazapentacene whereas fluorine substituents increase the reorganization energy as a result of fine-tuning molecular vibrations. Second, the electron transfer integral is very sensitive to subtle changes in the 2D π-stacking with brickwork arrangement. The unprecedentedly high electron mobility of 4Cl-TAP is attributed to the reduced reorganization energy and enhanced electron transfer integral as a result of modification of tetraazapentacene with four chlorine substituents.

9.
Phys Chem Chem Phys ; 20(5): 3784-3794, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29349447

ABSTRACT

2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ) was recently reported to display excellent electron transport properties in single crystal field-effect transistors (FETs). Its carrier mobility can reach 25 cm2 V-1 s-1 in devices. However, its counterparts TCNQ and F4-TCNQ (tetrafluoro-7,7,8,8-tetracyanoquinodimethane) do not exhibit the same highly efficient behavior. To better understand this significant difference in charge carrier mobility, a multiscale approach combining semiclassical Marcus hopping theory, a quantum nuclear enabled hopping model and molecular dynamics simulations was performed to assess the electron mobilities of the Fn-TCNQ (n = 0, 2, 4) systems in this work. The results indicated that the outstanding electron transport behavior of F2-TCNQ arises from its effective 3D charge carrier percolation network due to its special packing motif and the nuclear tunneling effect. Moreover, the poor transport properties of TCNQ and F4-TCNQ stem from their invalid packing and strong thermal disorder. It was found that Marcus theory underestimated the mobilities for all the systems, while the quantum model with the nuclear tunneling effect provided reasonable results compared to experiments. Moreover, the band-like transport behavior of F2-TCNQ was well described by the quantum nuclear enabled hopping model. In addition, quantum theory of atoms in molecules (QTAIM) analysis and symmetry-adapted perturbation theory (SAPT) were used to characterize the intermolecular interactions in TCNQ, F2-TCNQ and F4-TCNQ crystals. A primary understanding of various noncovalent interaction responses for crystal formation is crucial to understand the structure-property relationships in organic molecular materials.

10.
Phys Chem Chem Phys ; 19(21): 13978-13993, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28516987

ABSTRACT

A theoretical study was carried out to investigate the electronic structures and the charge transport properties of a series of naphthodithiophene diimide (NDTI) thiophene α-substituted derivatives NDTI-X using density functional theory and classical Marcus charge transfer theory. This study deeply revealed the structure-property relationships by analyzing the intermolecular interactions in crystal structures of C8-NDTI and C8-NDTI-Cl thoroughly by using the Hirshfeld surface, QTAIM theories and symmetry-adapted perturbation theory (SAPT). Our results suggested that a 2-D brick-like π-stacking structure makes C8-NDTI-Cl a more excellent n-type semiconducting material with µmax-e of 2.554 cm2 V-1 s-1 than C8-NDTI with a herringbone-like slipped π-stacking motif. In addition, the calculated results showed that by modifying the thiophene α-positions of NDTI with electron-withdrawing substituents, -F, -Cl and -CN, low-lying LUMO energy levels and a high adiabatic electron affinity EA(a) can be obtained; while introducing electron-donating groups, benzene (-B), thiophene (-T), benzo[b]thiophene (-BT) and naphtha[2,3-b]thiophene (-NT), expanded the molecular π-conjugated backbone, and narrow band gaps, high EA(a) and small reorganization energies can be obtained. Theoretical simulations predict that NDTI-CN is an excellent air-stable n-type organic semiconducting material with an average electron mobility µe of up to 1.743 cm2 V-1 s-1. Owing to their high EA(a), moderate adiabatic ionization potential IP(a) as well as small hole and electron reorganization energies, NDTI-BT and NDTI-NT are two well-balanced air-stable ambipolar semiconducting materials. The theoretical average hole/electron mobilities are as high as 2.708/3.739 cm2 V-1 s-1 for C8-NDTI-NT and 1.597/2.350 cm2 V-1 s-1 for C8-NDTI-BT, respectively.

11.
J Phys Chem A ; 120(15): 2390-400, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27027319

ABSTRACT

A series of pentacene derivatives, halogen-substituted and thiophene- and pyridine-substituted, have been studied with a focus on the electronic properties and charge transport properties using density functional theory and classical Marcus charge-transfer theory. The transport properties of holes and electrons have been studied to get insight into the effect of halogenation and heteroatom substitution on transport and injection of charge carriers. The calculation results revealed that fluorination and chlorination can effectively lower the lowest unoccupied molecular orbital (LUMO) level, modulate the hole and electron reorganization energy, improve the stacking mode of the crystal structure, and enhance the ambipolar characteristic. Chlorination gives a better ambipolar characteristic. On the basis of halogen substitution, the substitution of terminal benzene ring of triisopropyl-silylethynyl-pentacene (TIPS-PEN) by a thiophene or pyridine will greatly lower the LUMO level and improve the stacking mode, leading to more suitable ambipolar materials. Hence, both intra- and extra-ring substitution are favorable to enhance the ambipolar transport property of TIPS-PEN.

12.
J Mol Model ; 20(11): 2502, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25367043

ABSTRACT

The charge-transport properties of a series of silylethynylated N-heteropentacenes (TIPS-PEN-xN; x = 2, 4) were systematically investigated using Marcus electron-transfer theory coupled with kinetic Monte Carlo simulations. Electronic structure calculations showed that introducing more pyrazine rings decreases the energy levels of the lowest unoccupied molecular orbitals (LUMOs) and should aid electron transfer. The number and the positions of the pyrazine rings greatly influence the molecular packing in crystals and hence the intermolecular electronic coupling. Furthermore, the introduction of internal (rather than external) pyrazine rings leads to a better charge-transport network. Transport parameters evaluated from the hopping and band-like models both demonstrate that, among the TIPS-PEN-xN molecules, B-TIPS-PEN-4N-which has two internal pyrazine rings-is the most promising n-type material.


Subject(s)
Naphthacenes/chemistry , Pyrazines/chemistry , Semiconductors , Silanes/chemistry , Electrons , Energy Transfer , Models, Chemical , Molecular Dynamics Simulation , Molecular Structure , Monte Carlo Method , Quantum Theory , Structure-Activity Relationship
13.
Chemistry ; 20(16): 4671-80, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24596028

ABSTRACT

The ground and excited states, charge injection/transport, and phosphorescence properties of eleven carbazole- and triphenylamine-functionalized Ir(III) complexes were investigated by using the DFT method. By analyzing the spin-orbit coupling (SOC) matrix elements, radiative decay rate constants k(r), and the electronic structures and energies at the S0(opt) and T1(opt) states, it was possible to rationalize the order of the experimental phosphorescence quantum yields of a series of Ir(III) complexes and to predict that [Ir(Nph-2-Cz-tz)3] has a higher phosphorescence quantum yield than [Ir(TPA-tz)3] (TPA=triphenylamine, tz=thiazolyl, Cz=carbazole, Nph=N-phenyl). Carbazole-functionalized Ir(III) complexes were shown to be efficient phosphorescent materials that have not only fast but also balanced electron/hole-transport performance as well as high phosphorescence quantum yields. The phosphorescence emission spectra can be modulated by modifying or replacing a pyridyl substituent.

14.
Phys Chem Chem Phys ; 13(43): 19490-8, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21976209

ABSTRACT

Ladder-type heterotetracenes possessing fully ring-fused structures are a promising class of optoelectronic materials in terms of the lack of any conformational disorder, intense emission and high carrier mobility. To uncover how dual bridging atoms tune their structural and optoelectronic properties, the heterotetracenes were systematically investigated by theoretical calculations from several aspects, such as (i) the geometrical structures of ground and excited states; (ii) the highest occupied molecular orbitals (HOMO), the lowest unoccupied molecular orbitals (LUMO); (iii) ionization potentials (IP), electron affinities (EA), hole extraction potentials (HEP), electron extraction potentials (EEP), internal reorganization energies (λ(int)) and transfer integrals (V); (iv) the absorption and emission spectra in vacuum and the dichloromethane (CH(2)Cl(2)) solvent, band gaps (E(g)), excitation energies at the lowest singlet (E(S1)) or triplet (E(T1)) states as well as radiative lifetimes (τ). The theoretical investigations may be useful for finding new leading materials and are likely to provide important information for improving their photoelectric performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...