Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Fish Physiol Biochem ; 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36525145

ABSTRACT

The purpose of this research is to explore the interaction between dietary leucine and isoleucine levels on whole-body composition, plasma and liver biochemical indexes, amino acids deposition in the liver, and amino acid metabolism of blunt snout bream (Megalobrama amblycephala). The test fish (average weight: 56.00 ± 0.55 g) were fed one of six diets at random containing two leucine levels (1.70% and 2.50%) and three isoleucine levels (1.00%, 1.20%, and 1.40%) for 8 weeks. The results showed that the final weight and weight gain rate were the highest in the fish fed low-level leucine and high-level isoleucine diets (P > 0.05). Furthermore, the crude lipid content was significantly adjusted by diets with diverse levels of leucine and isoleucine (P < 0.05). In addition, interactive effects of these two branched-chain amino acids (BCAAs) were found on plasma total protein, blood ammonia, and blood urea nitrogen of test fish (P < 0.05). Additionally, the liver amino acid profiles were significantly influenced by the interactive effects of the two BCAAs (P < 0.05). Moreover, interactive effects of dietary leucine and isoleucine were significantly observed in the expressions of amino acid metabolism-related genes (P < 0.05). These findings suggested that dietary leucine and isoleucine had interaction. Meanwhile, the interaction between them was more conducive to the growth and quality improvement of blunt snout bream when the dietary leucine level was 1.70% and isoleucine level was 1.40%.

2.
Opt Express ; 26(15): 19498-19512, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30114121

ABSTRACT

For the cavity-based electromagnetically induced transparent (EIT), as the coherent driving field is enhanced by the optical cavity, the weak probe field can propagate through the atomic ensemble without absorption even if the driving field is weak. The extreme case of vacuum in the cavity is called "vacuum-induced transparency" (VIT) to distinguish it from the cavity EIT. Here we construct a new kind of cavity made of Metamaterials, i.e. ε-negative (EN) and µ-negative (MN) slabs, and study the VIT phenomena of the atomic ensemble doped within it. When the impedances of the MN and EN slabs are matched to each other and the dissipation of the material is small, it behaves as a surface plasmon cavity with a huge Q factor. And the VIT phenomenon in this cavity appears. By adjusting the position of atoms, the coupling strength between the atom and the structure could be changed. Two kinds of extremes of VIT, the coherent population trapping (CPT) and the Autler-Townes splitting (ATS), can be achieved in this system easily. Our proposal could be used in the realization of ultra-strong coupling and integrated devices on quantum memory or optical switch.

3.
Opt Lett ; 42(15): 2914-2917, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28957206

ABSTRACT

We investigate coherent controlling single-photon nonreciprocal propagation in a pair of waveguides chirally coupled to an atom by using a classical optical field. The results show that for a nonresonant photon, the perfect single-photon nonreciprocal propagation can be realized by adjusting the Rabi frequency and detuning. Furthermore, the nonreciprocal propagation is switchable by using the classic field. The calculated results also show that the system can be used as a frequency filter to filter out some special frequencies for single-photon nonreciprocal propagation. The influences of nonperfect chiral coupling and dissipations on the nonreciprocal propagation are also shown.

4.
Ying Yong Sheng Tai Xue Bao ; 27(2): 539-48, 2016 Feb.
Article in Chinese | MEDLINE | ID: mdl-27396129

ABSTRACT

The Daycent model was calibrated and validated using measured crop yield and soil organic carbon (SOC) as double assessment standards based on the experimental data from three long-term experiments (i.e. Zhengzhou site in Henan Province, Yucheng site in Shandong Province and Quzhou site in Hebei Province) in North China. Results showed that the build-up parameters simulated the long-term dynamic changes of crop yields and SOC very well, indicating Daycent model could project the dynamic changes of crop yield and SOC soundly. After calibration and validation, Daycent model was used to simulate the changes of SOC under future climate scenarios (representative concentration pathway 4.5, RCP 4.5) with four different management practices (chemical fertilizer, NPK; chemical fertilizer + organic manure, MNPK; straw incorporation, SNPK; no-tillage +straw incorporation, NT) at the three sites. At Zhengzhou site, the change of SOC was highest for MNPK treatment during the period of 2001-2050 (1.7%) and followed by SNPK (1.3%) and NPK (0.8%) in terms of annual relative increase rate (ARIR), indicating long-term amendment of organic manure could effectively increase SOC for light loam soil with irrigation condition. At Yucheng site, the increase of SOC (ARIR) under MNPK treatment (0.4%) was higher than under NPK treatment (0.3%). In addition, the increase of SOC was very low under all treatments at this site, probably due to light soil salinization. At Quzhou site, the increase of SOC (ARIR) under NT treatment was 1.3%, higher than those under SNPK treatment (0.7%) and NPK treatment (0.4%), indicating NT was more effective for SOC increase in this area. We concluded that no-tillage with straw incorporation is the optimized management practice to increase SOC in North China Plain due to mild climate, sound irrigation and available mechanical equipment for straw processing and no-tillage operation.


Subject(s)
Agriculture/methods , Carbon/analysis , Fertilizers , Models, Theoretical , Soil/chemistry , China , Climate , Manure
5.
Funct Plant Biol ; 40(5): 494-506, 2013 May.
Article in English | MEDLINE | ID: mdl-32481126

ABSTRACT

The effect of soil drenching with 10µM abscisic acid (ABA) on the physiological responses of two spring wheat (Triticum aestivum L.) cultivars released in different decades was evaluated when subjected to a water deficit at jointing or at booting. Exogenous ABA application increased the ABA concentration in the leaves, reduced the stomatal conductance (gs), slowed the rate of water use, decreased the lethal leaf water potential (ψ) used to measure desiccation tolerance and lowered the soil water content (SWC) at which leaf relative water content (RWC) began to decrease and wilting was observed. Exogenous ABA application also reduced reactive oxygen species (ROS) formation and increased antioxidant enzyme activity, leading to a reduction in the oxidative damage to lipid membranes in both cultivars exposed to water stress at jointing and booting. The decrease in leaf RWC and wilting occurred at lower values of SWC in the recently-released cultivar than in the earlier-released cultivar. The recently-released cultivar also had higher grain yield than the earlier-released cultivar at moderate water stress, but the grain yield in both cultivars was reduced by water stress and by the exogenous ABA treatment. However, exogenous ABA treatment increased transpiration efficiency for grain (TEG) of both cultivars under moderate water stress. These results indicate that ABA played an important role in slowing water use and enhancing the antioxidant defence during soil drying, but this did not result in increased yields under drought stress.

6.
J Exp Bot ; 63(13): 4849-60, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22859677

ABSTRACT

A pot experiment was conducted to investigate the effect of the non-protein amino acid, ß-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat.


Subject(s)
Abscisic Acid/metabolism , Aminobutyrates/pharmacology , Stress, Physiological/drug effects , Triticum/drug effects , Water/metabolism , Abscisic Acid/analysis , Antioxidants/metabolism , Biomass , Desiccation , Droughts , Edible Grain/drug effects , Edible Grain/growth & development , Edible Grain/physiology , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/physiology , Plant Stomata/drug effects , Plant Stomata/growth & development , Plant Stomata/physiology , Plant Transpiration/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Soil , Triticum/growth & development , Triticum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...