Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786675

ABSTRACT

Sodium butyrate (SB) is a histone deacetylase inhibitor that can induce changes in gene expression and secondary metabolite titers by inhibiting histone deacetylation. Our preliminary analysis also indicated that SB significantly enhanced the biosynthesis of carotenoids in the Rhodotorula glutinis strain YM25079, although the underlying regulatory mechanisms remained unclear. Based on an integrated analysis of transcriptomics and metabolomics, this study revealed changes in cell membrane stability, DNA and protein methylation levels, amino acid metabolism, and oxidative stress in the strain YM25079 under SB exposure. Among them, the upregulation of oxidative stress may be a contributing factor for the increase in carotenoid biosynthesis, subsequently enhancing the strain resistance to oxidative stress and maintaining the membrane fluidity and function for normal cell growth. To summarize, our results showed that SB promoted carotenoid synthesis in the Rhodotorula glutinis strain YM25079 and increased the levels of the key metabolites and regulators involved in the stress response of yeast cells. Additionally, epigenetic modifiers were applied to produce fungal carotenoid, providing a novel and promising strategy for the biosynthesis of yeast-based carotenoids.

2.
BMC Microbiol ; 22(1): 319, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36564716

ABSTRACT

BACKGROUND: Low temperatures greatly limit the growth of microorganisms. Low-temperature adaptation in microorganisms involves multiple mechanisms. Carotenoids are naturally occurring lipid-soluble pigments that act as antioxidants and protect cells and tissues from the harmful effects of free radicals and singlet oxygen. However, studies on the regulation of carotenoid biosynthesis at low temperatures in microorganisms are limited. In this study, we investigated the correlation between carotenoids and low-temperature adaptation in the cold-adapted strain of Rhodosporidium kratochvilovae YM25235. RESULTS: Carotenoid biosynthesis in YM25235 was inhibited by knocking out the bifunctional lycopene cyclase/phytoene synthase gene (RKCrtYB) using the established CRISPR/Cas9 gene-editing system based on endogenous U6 promoters. The carotenoids were extracted with acetone, and the content and composition of the carotenoids were analyzed by spectrophotometry and HPLC. Then, the levels of reactive oxygen species (ROS) and the growth rate in YM25235 were determined at a low temperature. The results indicated that the carotenoid biosynthesis and ROS levels were increased in the YM25235 strain at a low temperature and inhibition of carotenoid biosynthesis was associated with higher ROS levels and a significant decrease in the growth rate of YM25235 at a low temperature. CONCLUSIONS: The regulation of carotenoid biosynthesis was associated with low-temperature adaptation in YM25235. Our findings provided a strong foundation for conducting further studies on the mechanism by which YM25235 can adapt to low-temperature stress.


Subject(s)
Antioxidants , Carotenoids , Temperature , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...