Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(40): 16493-16502, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37750864

ABSTRACT

Halide perovskite quantum dots (QDs) are one of the most prospective candidates for photocatalytic CO2 reduction, but their photocatalytic performances are far from satisfactory due to structural instability and severe charge recombination. In this study, we demonstrated a CsPbBr3 QDs/In2O3 hierarchical nanotube (CPB/IO) for efficient CO2 conversion, in which CsPbBr3 QDs were well-dispersed on the In-MOF-derived In2O3 nanotube by a facile self-assembly process. The optimized CPB/IO catalyst displayed an enhanced photocatalytic CO2 performance with a (CO + CH4) generation rate of 16.37 µmol·g-1·h-1 upon simulated solar illumination without a photosensitizer and sacrificial agent, which is 3.59 times stronger than that of pristine CsPbBr3 QDs (4.56 µmol·g-1·h-1). Besides, the modified CsPbBr3 QD catalyst exhibited an obvious increase of CH4 selectivity and excellent stability after four cycles. The unique zero-dimensional (0D)/one-dimensional (1D) heterostructure and matching band potentials between CsPbBr3 and In2O3 supply an intimate interfacial contact, numerous active sites, and effective charge transfer for CO2 photoreduction. This work can inspire the formation of novel halide-perovskite-involving photocatalysts for solar fuel formation.

2.
Langmuir ; 39(35): 12467-12475, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37620251

ABSTRACT

In this study, visible-light-responsive carbon dots (CDs)/ZnIn2S4@MIL-88A (C/ZI@ML) photocatalysts were successfully prepared through in situ loading CDs and ZnIn2S4 nanosheets on MIL-88A(Fe) to form a ternary heterojunction. The detailed characterization indicated that the two-dimensional ZnIn2S4 nanosheets were uniformly coated on the surface of MIL-88A(Fe), and ZnIn2S4/MIL-88A(Fe) exhibited enhanced photocatalytic hydrogen production performance (1259.63 µmol h-1 g-1) compared to that of pristine MIL-88A(Fe) and ZnIn2S4 under visible light illumination. After introduction of CDs into ZnIn2S4/MIL-88A(Fe), the C/ZI@ML catalyst remarkably enhanced the photocatalytic activity and the hydrogen evolution rate of 1C/ZI@ML was up to 3609.23 µmol g-1 h-1. The photoinduced charge carriers of C/ZI@ML can be efficiently separated and migrated because of the close contacted interface, synergistic effect, and suitable band structure. In combination with photoelectrochemical experiments and electron paramagnetic resonance spectra, a possible photocatalytic mechanism over C/ZI@ML was proposed. This work demonstrated a facile preparation method for fabricating efficient visible-light-driven heterojunction photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...