Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34654743

ABSTRACT

Magnetic nanoparticles are robust contrast agents for MRI and often produce particularly strong signal changes per particle. Leveraging these effects to probe cellular- and molecular-level phenomena in tissue can, however, be hindered by the large sizes of typical nanoparticle contrast agents. To address this limitation, we introduce single-nanometer iron oxide (SNIO) particles that exhibit superparamagnetic properties in conjunction with hydrodynamic diameters comparable to small, highly diffusible imaging agents. These particles efficiently brighten the signal in T1-weighted MRI, producing per-molecule longitudinal relaxation enhancements over 10 times greater than conventional gadolinium-based contrast agents. We show that SNIOs permeate biological tissue effectively following injection into brain parenchyma or cerebrospinal fluid. We also demonstrate that SNIOs readily enter the brain following ultrasound-induced blood-brain barrier disruption, emulating the performance of a gadolinium agent and providing a basis for future biomedical applications. These results thus demonstrate a platform for MRI probe development that combines advantages of small-molecule imaging agents with the potency of nanoscale materials.


Subject(s)
Contrast Media/administration & dosage , Magnetic Iron Oxide Nanoparticles/administration & dosage , Magnetic Resonance Imaging/methods , Animals , Blood-Brain Barrier , Contrast Media/pharmacokinetics , Magnetic Iron Oxide Nanoparticles/chemistry , Particle Size , Permeability , Rats
2.
Nature ; 593(7857): 114-118, 2021 05.
Article in English | MEDLINE | ID: mdl-33790466

ABSTRACT

Innate social behaviours, such as mating and fighting, are fundamental to animal reproduction and survival1. However, social engagements can also put an individual at risk2. Little is known about the neural mechanisms that enable appropriate risk assessment and the suppression of hazardous social interactions. Here we identify the posteromedial nucleus of the cortical amygdala (COApm) as a locus required for the suppression of male mating when a female mouse is unhealthy. Using anatomical tracing, functional imaging and circuit-level epistatic analyses, we show that suppression of mating with an unhealthy female is mediated by the COApm projections onto the glutamatergic population of the medial amygdalar nucleus (MEA). We further show that the role of the COApm-to-MEA connection in regulating male mating behaviour relies on the neuromodulator thyrotropin-releasing hormone (TRH). TRH is expressed in the COApm, whereas the TRH receptor (TRHR) is found in the postsynaptic MEA glutamatergic neurons. Manipulating neural activity of TRH-expressing neurons in the COApm modulated male mating behaviour. In the MEA, activation of the TRHR pathway by ligand infusion inhibited mating even towards healthy female mice, whereas genetic ablation of TRHR facilitated mating with unhealthy individuals. In summary, we reveal a neural pathway that relies on the neuromodulator TRH to modulate social interactions according to the health status of the reciprocating individual. Individuals must balance the cost of social interactions relative to the benefit, as deficits in the ability to select healthy mates may lead to the spread of disease.


Subject(s)
Amygdala/cytology , Amygdala/physiology , Mating Preference, Animal/physiology , Neural Pathways/physiology , Social Behavior , Animals , Copulation/physiology , Corticomedial Nuclear Complex/cytology , Corticomedial Nuclear Complex/metabolism , Female , Glutamic Acid/metabolism , Health , Ligands , Lipopolysaccharides/pharmacology , Male , Mice , Neurons/metabolism , Receptors, Thyrotropin-Releasing Hormone/metabolism , Thyrotropin-Releasing Hormone/metabolism
3.
PLoS One ; 15(5): e0232927, 2020.
Article in English | MEDLINE | ID: mdl-32396566

ABSTRACT

Tetraene macrolides remain one of the most reliable fungicidal agents as resistance of fungal pathogens to these antibiotics is relatively rare. The modes of action and biosynthesis of polyene macrolides had been the focus of research over the past few years. However, few studies have been carried out on the overproduction of polyene macrolides. In the present study, cumulative drug-resistance mutation was used to obtain a quintuple mutant G5-59 with huge tetraene macrolide overproduction from the starting strain Streptomyces diastatochromogenes 1628. Through DNA sequence analysis, the mutation points in the genes of rsmG, rpsL and rpoB were identified. Additionally, the growth characteristic and expression level of tetrRI gene (belonging to the large ATP binding regulator of LuxR family) involved in the biosynthesis of tetraene macrolides were analyzed. As examined with 5L fermentor, the quintuple mutant G5-59 grew very well and the maximum productivity of tetramycin A, tetramycin P and tetrin B was as high as 1735, 2811 and 1500 mg/L, which was 8.7-, 16- and 25-fold higher than that of the wild-type strain 1628, respectively. The quintuple mutant G5-59 could be useful for further improvement of tetraene macrolides production at industrial level.


Subject(s)
Bacterial Proteins/genetics , Bioreactors/microbiology , Macrolides/metabolism , Mutation , Streptomyces/growth & development , DNA-Directed RNA Polymerases/genetics , Drug Resistance, Bacterial , Fermentation , Metabolic Engineering , Methyltransferases/genetics , Ribosomal Proteins/genetics , Sequence Analysis, DNA , Streptomyces/genetics , Streptomyces/metabolism
4.
Insects ; 11(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936816

ABSTRACT

Yeast-like symbionts (YLSs), harbored in the abdominal fat body of brown planthoppers (BPHs), Nilaparvata lugens Stål, play an important role in the growth, development, and reproduction of their host. However, little is known about the diversity of the symbiotic fungal YLSs that are harbored in the eggs of BPHs and the difference between fertilized eggs and non-fertilized eggs. Here, we investigate the fungal community compositions of non-fertilized and fertilized eggs of BPHs and identified the YLSs in the hemolymph by qPCR. A total of seven phyla, 126 genera, and 158 species were obtained from all samples, and Ascomycota and Basidiomycota were the most predominant phyla in the non-fertilized and fertilized eggs. The richness index indicated that microbial diversity in the non-fertilized and fertilized eggs exhibited a profound difference. In addition, 11 strains were only identified in the fertilized eggs, and these strains provide new insights into the constitution of species in YLSs. The difference of Pichia guilliermondii in the female hemolymph indicated that fertilization affected the diversity in the eggs by changing the YLSs in the hemolymph. Our research provides a comprehensive understanding of YLS species and their abundance in the eggs of BPHs, and it primarily explores how the changes of YLSs in the hemolymph lead to this difference.

5.
J Am Chem Soc ; 141(40): 15751-15754, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31523957

ABSTRACT

Neurotransmitter-sensitive contrast agents for magnetic resonance imaging (MRI) have recently been used for mapping signaling dynamics in live animal brains, but paramagnetic sensors for T1-weighted MRI are usually effective only at micromolar concentrations that themselves perturb neurochemistry. Here we present an alternative molecular architecture for detecting neurotransmitters, using superparamagnetic iron oxide nanoparticles conjugated to tethered neurotransmitter analogs and engineered neurotransmitter binding proteins. Interactions between the nanoparticle conjugates result in clustering that is reversibly disrupted in the presence of neurotransmitter analytes, thus altering T2-weighted MRI signals. We demonstrate this principle using tethered dopamine and serotonin analogs, together with proteins selected for their ability to competitively bind either the analogs or the neurotransmitters themselves. Corresponding sensors for dopamine and serotonin exhibit target-selective relaxivity changes of up to 20%, while also operating below endogenous neurotransmitter concentrations. Semisynthetic magnetic particle sensors thus represent a promising path for minimally perturbative studies of neurochemical analytes.


Subject(s)
Biosensing Techniques/methods , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Neurotransmitter Agents/analysis , Animals , Binding, Competitive , Brain/diagnostic imaging , Brain/metabolism , Contrast Media/administration & dosage , Dopamine/analysis , Ligands , Magnetite Nanoparticles/administration & dosage , Protein Binding , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...