Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(21): 7083-7086, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30887653

ABSTRACT

Direct non-oxidative methane conversion (DNMC) has been recognized as a single-step technology that directly converts methane into olefins and higher hydrocarbons. High reaction temperature and low catalyst durability, resulting from the endothermic reaction and coke deposition, are two main challenges. We show that a millisecond catalytic wall reactor enables stable methane conversion, C2+ selectivity, coke yield, and long-term durability. These effects originate from initiation of the DNMC on a reactor wall and maintenance of the reaction by gas-phase chemistry within the reactor compartment. The results obtained under various temperatures and gas flow rates form a basis for optimizing the process towards lighter C2 or heavier aromatic products. A process simulation was done by Aspen Plus to understand the practical implications of this reactor in DNMC. High carbon and thermal efficiencies and low cost of the reactor materials are realized, indicating the technoeconomic viability of this DNMC technology.

2.
J Inorg Biochem ; 119: 1-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23160144

ABSTRACT

This paper describes the design, characterization, and metal-binding properties of a 32-residue polypeptide called AQ-C16C19. The sequence of this peptide is composed of four repeats of the seven residue sequence Ile-Ala-Ala-Leu-Glu-Gln-Lys but with a Cys-X-X-Cys metal-binding motif substituted at positions 16-19. Size exclusion chromatography with multiangle light scattering detection (SEC-MALS) and circular dichroism (CD) spectroscopy studies showed that the apo peptide exhibits a pH-dependent oligomerization state in which a three-stranded α-helical coiled coil is dominant between pH5.4 and 8.5. The Cd(2+)-binding properties of the AQ-C16C19 peptide were studied by ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI MS), and (113)Cd NMR techniques. The holoprotein was found to contain a polynuclear cadmium-thiolate center formed within the hydrophobic core of the triple-stranded α-helical coiled-coil structure. The X-ray crystal structure of the Cd-loaded peptide, resolved at 1.85Å resolution, revealed an adamantane-like configuration of the polynuclear metal center consisting of four cadmium ions, six thiolate sulfur ligands from cysteine residues and four oxygen-donor ligands. Three of these are from glutamic acid residues and one is from an exogenous water molecule. Thus, each cadmium ion is coordinated in a distorted tetrahedral S(3)O geometry. The metal cluster was found to form cooperatively at pH5.4 but in a stepwise fashion at pH>7. The results demonstrate that synthetic coiled-coils can be designed to incorporate multinuclear metal clusters, a proof-of-concept for their potential use in developing synthetic metalloenzymes and multi-electron redox agents.


Subject(s)
Biomimetic Materials/chemistry , Cadmium/chemistry , Coordination Complexes/chemistry , Metalloproteins/chemistry , Peptides/chemistry , Amino Acid Motifs , Chromatography, Gel , Circular Dichroism , Crystallography, X-Ray , Cysteine/chemistry , Glutamic Acid/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Light , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Protein Structure, Secondary , Scattering, Radiation , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...