Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39001164

ABSTRACT

Hyperspectral detection of the change rate of organic matter content in agricultural remote sensing requires a high signal-to-noise ratio (SNR). However, due to the large number and efficiency limitation of the components, it is difficult to improve the SNR. This study uses high-efficiency convex grating with a diffraction efficiency exceeding 50% across the 360-850 nm range, a back-illuminated Complementary Metal Oxide Semiconductor (CMOS) detector with a 95% efficiency in peak wavelength, and silver-coated mirrors to develop an imaging spectrometer for detecting soil organic matter (SOM). The designed system meets the spectral resolution of 10 nm in the 360-850 nm range and achieves a swath of 100 km and a spatial resolution of 100 m at an orbital height of 648.2 km. This study also uses the basic structure of Offner with fewer components in the design and sets the mirrors of the Offner structure to have the same sphere, which can achieve the rapid adjustment of the co-standard. This study performs a theoretical analysis of the developed Offner imaging spectrometer based on the classical Rowland circular structure, with a 21.8 mm slit length; simulates its capacity for suppressing the +2nd-order diffraction stray light with the filter; and analyzes the imaging quality after meeting the tolerance requirements, which is combined with the surface shape characteristics of the high-efficiency grating. After this test, the grating has a diffraction efficiency above 50%, and the silver-coated mirrors have a reflection value above 95% on average. Finally, the laboratory tests show that the SNR over the waveband exceeds 300 and reaches 800 at 550 nm, which is higher than some current instruments in orbit for soil observation. The proposed imaging spectrometer has a spectral resolution of 10 nm, and its modulation transfer function (MTF) is greater than 0.23 at the Nyquist frequency, making it suitable for remote sensing observation of SOM change rate. The manufacture of such a high-efficiency broadband grating and the development of the proposed instrument with high energy transmission efficiency can provide a feasible technical solution for observing faint targets with a high SNR.

2.
Fish Physiol Biochem ; 47(6): 1983-1993, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34674076

ABSTRACT

Aggressive behavior is important for animals to obtain limited resources. Understanding fish behavior and physiological response is of great significance to evaluate aquaculture production and fish welfare. Food is an important trigger of aggressive behavior in juvenile fish under high-density aquaculture conditions. The aim of this study was to investigate the aggressive behavior and monoamine levels of juvenile pufferfish (mean body mass of 6.29 ± 0.33 g) under normal feeding and restricted feeding. Our main results included the following: (1) The mortality and fin damage were higher and aggression was more intense of juvenile pufferfish at the 1% ration than those of the 3% ration; (2) during feeding, the velocity, body contact, and activity at the 1% ration were significantly higher than that of the 3% ration; (3) the concentrations of brain 5-hydroxyindoleacetic acid (5-HIAA) and monoamine oxidase A (MAOA) at the 1% ration were significantly lower, and dopamine (DA) concentrations were significantly higher. These results suggest that juvenile pufferfish shows serious aggressive behavior at the low ration, which may be related to the decrease of 5-HIAA and MAOA concentrations, and the increase of DA concentrations.


Subject(s)
Aggression , Biogenic Monoamines/analysis , Diet/veterinary , Takifugu , Animals , Brain , Dopamine , Hydroxyindoleacetic Acid , Monoamine Oxidase
3.
Article in English | MEDLINE | ID: mdl-31766146

ABSTRACT

Aerobic denitrification microbes have great potential to solve the problem of NO3--N accumulation in industrialized recirculating aquaculture systems (RASs). A novel salt-tolerant aerobic denitrifier was isolated from a marine recirculating aquaculture system (RAS) and identified as Halomonas alkaliphile HRL-9. Its aerobic denitrification performance in different dissolved oxygen concentrations, temperatures, and C/N ratios was studied. Investigations into nitrogen balance and nitrate reductase genes (napA and narG) were also carried out. The results showed that the optimal conditions for nitrate removal were temperature of 30 °C, a shaking speed of 150 rpm, and a C/N ratio of 10. For nitrate nitrogen (NO3--N) (initial concentration 101.8 mg·L-1), the sole nitrogen source of the growth of HRL-9, the maximum NO3--N removal efficiency reached 98.0% after 24 h and the maximum total nitrogen removal efficiency was 77.3% after 48 h. Nitrogen balance analysis showed that 21.7% of NO3--N was converted into intracellular nitrogen, 3.3% of NO3--N was converted into other nitrification products (i.e., nitrous nitrogen, ammonium nitrogen, and organic nitrogen), and 74.5% of NO3--N might be converted to gaseous products. The identification of functional genes confirmed the existence of the napA gene in strain HRL-9, but no narG gene was found. These results confirm that the aerobic denitrification strain, Halomonas alkaliphile HRL-9, which has excellent aerobic denitrification abilities, can also help us understand the microbiological mechanism and transformation pathway of aerobic denitrification in RASs.


Subject(s)
Biotransformation , Denitrification , Halomonas/metabolism , Nitrates/metabolism , Nitrites/metabolism , Salt Tolerance , Seawater/chemistry , Aerobiosis , China
SELECTION OF CITATIONS
SEARCH DETAIL
...