Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.375
Filter
1.
J Mol Cell Cardiol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844061

ABSTRACT

Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.

2.
Regen Biomater ; 11: rbae054, 2024.
Article in English | MEDLINE | ID: mdl-38845852

ABSTRACT

Following peripheral nerve anastomosis, the anastomotic site is prone to adhesions with surrounding tissues, consequently impacting the effectiveness of nerve repair. This study explores the development and efficacy of a decellularized epineurium as an anti-adhesive biofilm in peripheral nerve repair. Firstly, the entire epineurium was extracted from fresh porcine sciatic nerves, followed by a decellularization process. The decellularization efficiency was then thoroughly assessed. Subsequently, the decellularized epineurium underwent proteomic analysis to determine the remaining bioactive components. To ensure biosafety, the decellularized epineurium underwent cytotoxicity assays, hemolysis tests, cell affinity assays, and assessments of the immune response following subcutaneous implantation. Finally, the functionality of the biofilm was determined using a sciatic nerve transection and anastomosis model in rats. The result indicated that the decellularization process effectively removed cellular components from the epineurium while preserving a number of bioactive molecules, and this decellularized epineurium was effective in preventing adhesion while promoting nerve repairment and functional recovery. In conclusion, the decellularized epineurium represents a novel and promising anti-adhesion biofilm for enhancing surgical outcomes of peripheral nerve repair.

3.
J Cell Mol Med ; 28(11): e18408, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837585

ABSTRACT

We employed single-cell analysis techniques, specifically the inferCNV method, to dissect the complex progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) through minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC). This approach enabled the identification of Cluster 6, which was significantly associated with LUAD progression. Our comprehensive analysis included intercellular interaction, transcription factor regulatory networks, trajectory analysis, and gene set variation analysis (GSVA), leading to the development of the lung progression associated signature (LPAS). Interestingly, we discovered that the LPAS not only accurately predicts the prognosis of LUAD patients but also forecasts genomic alterations, distinguishes between 'cold' and 'hot' tumours, and identifies potential candidates suitable for immunotherapy. PSMB1, identified within Cluster 6, was experimentally shown to significantly enhance cancer cell invasion and migration, highlighting the clinical relevance of LPAS in predicting LUAD progression and providing a potential target for therapeutic intervention. Our findings suggest that LPAS offers a novel biomarker for LUAD patient stratification, with significant implications for improving prognostic accuracy and guiding treatment decisions.


Subject(s)
Adenocarcinoma of Lung , Disease Progression , Gene Expression Regulation, Neoplastic , Genomics , Lung Neoplasms , Single-Cell Analysis , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Prognosis , Single-Cell Analysis/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Genomics/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Regulatory Networks , Cell Line, Tumor , Gene Expression Profiling , Neoplasm Invasiveness
4.
BMC Musculoskelet Disord ; 25(1): 429, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824539

ABSTRACT

This article reports a case of a female patient admitted with swelling and subcutaneous mass in the right forearm, initially suspected to be multiple nerve fibroma. However, through preoperative imaging and surgery, the final diagnosis confirmed superficial thrombophlebitis. This condition resulted in entrapment of the radial nerve branch, leading to noticeable nerve entrapment and radiating pain. The surgery involved the excision of inflammatory tissue and thrombus, ligation of the cephalic vein, and complete release of the radial nerve branch. Postoperative pathology confirmed the presence of Superficial Thrombophlebitis. Through this case, we emphasize the importance of comprehensive utilization of clinical, imaging, and surgical interventions for more accurate diagnosis and treatment. This is the first clinical report of radial nerve branch entrapment due to superficial thrombophlebitis.


Subject(s)
Forearm , Nerve Compression Syndromes , Radial Nerve , Thrombophlebitis , Humans , Female , Thrombophlebitis/surgery , Thrombophlebitis/etiology , Thrombophlebitis/diagnosis , Nerve Compression Syndromes/etiology , Nerve Compression Syndromes/surgery , Forearm/innervation , Forearm/blood supply , Forearm/surgery , Radial Nerve/surgery , Radial Neuropathy/etiology , Radial Neuropathy/surgery , Middle Aged
5.
Article in English | MEDLINE | ID: mdl-38724856

ABSTRACT

BACKGROUND: While treatment advancements have prolonged the lives of patients with head and neck cancer, the subgroups of these patients at higher risk for cardiovascular disease (CVD) mortality remain unclear. METHODS: We analyzed data from the Surveillance, Epidemiology, and End Results (SEER) database for patients diagnosed with head and neck cancer from 2000 to 2019. We compared their CVD mortality against the general US population using standardized mortality ratios (SMRs). RESULTS: Our analysis included 474,366 patients, identifying that 14% of deaths were due to CVD, with an SMR of 1.19. Notably, patients under the age of 39 had a CVD SMR increase of over 100-fold. Those with distant tumor stages showed the highest CVD SMR of 1.52 (95% CI 1.50-1.54). An upward trend in SMR to 2.53 (95% CI 2.51-2.56) was observed from 2011 to 2019. Within the initial 5-year post-diagnosis, the SMR for CVD was 3.17 (95% CI 3.14-3.20), which exceeded the general population's rates but declined in the 5-20-year range after diagnosis. Patients who did not any therapy had the greatest CVD SMR of 2.26 (95% CI 2.24-2.28). Hypopharyngeal cancer patients exhibited the highest CVD SMR of 1.54 (95% CI 1.52-1.56). CONCLUSIONS: The study highlights that head and neck cancer patients, especially younger individuals and those with advanced disease stages, face substantial CVD mortality risks. The CVD SMR peaks within 5 years following diagnosis. Patients abstaining from treatment bear the highest risk of CVD mortality. Cardioprotective measures should be considered critical for this patient population.

6.
Angew Chem Int Ed Engl ; : e202407589, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703065

ABSTRACT

Directly electrochemical conversion of nitrate (NO3-) is an efficient and environmentally friendly technology for ammonia (NH3) production but is challenged by highly selective electrocatalysts. High-entropy alloys (HEAs) with unique properties are attractive materials in catalysis, particularly for multi-step reactions. Herein, we first reported the application of HEA (FeCoNiAlTi) for electrocatalytic NO3- reduction to NH3 (NRA). The bulk HEA is active for NRA but limited by the unsatisfied NH3 yield of 0.36 mg h-1 cm-2 and Faradaic efficiency (FE) of 82.66%. Through an effective phase engineering strategy, uniform intermetallic nanoparticles are introduced on the bulk HEA to increase electrochemical active surface area and charge transfer efficiency.The resulting nanostructured HEA (n-HEA) delivers enhanced electrochemical NRA performance in terms of NH3 yield (0.52 mg h-1 cm-2) and FE (95.23%). Further experimental and theoretical investigations reveal that the multi-active sites (Fe, Co, and Ni) dominated electrocatalysis for NRA over the n-HEA. Notably, the typical Co sites exhibit the lowest energy barrier for NRA with *NO + H+ + e- → *NOH as the rate-determining step.

8.
Nat Commun ; 15(1): 3748, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702298

ABSTRACT

The high redox potential of Zn0/2+ leads to low voltage of Zn batteries and therefore low energy density, plaguing deployment of Zn batteries in many energy-demanding applications. Though employing high-voltage cathode like spinel LiNi0.5Mn1.5O4 can increase the voltages of Zn batteries, Zn2+ ions will be immobilized in LiNi0.5Mn1.5O4 once intercalated, resulting in irreversibility. Here, we design a polymer hetero-electrolyte consisting of an anode layer with Zn2+ ions as charge carriers and a cathode layer that blocks the Zn2+ ion shuttle, which allows separated Zn and Li reversibility. As such, the Zn‖LNMO cell exhibits up to 2.4 V discharge voltage and 450 stable cycles with high reversible capacity, which are also attained in a scale-up pouch cell. The pouch cell shows a low self-discharge after resting for 28 days. The designed electrolyte paves the way to develop high-voltage Zn batteries based on reversible lithiated cathodes.

9.
J Thorac Dis ; 16(4): 2296-2313, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738222

ABSTRACT

Background: Spread through air space (STAS) is currently considered to be a significant predictor of a poor outcome of pulmonary adenocarcinoma. Preoperative prediction of STAS is of great importance for treatment planning. The aim of the present study was to establish a nomogram based on computed tomography (CT) features for predicting STAS in lung adenocarcinoma and to assess the prognosis of the patients with STAS. Methods: A retrospective cohort study was performed in Wuhan Union Hospital from December 2015 to March 2021. The sample was divided into training and testing cohorts. Clinicopathologic and radiologic variables were recorded. The independent risk factors for STAS were determined by stepwise regression and then incorporated into the nomogram. Receiver operating characteristic (ROC) curves and calibration curves analysed by the Hosmer-Lemeshow test were used to evaluate the performance of the model. Decision curve analysis (DCA) was conducted to determine the clinical value of the nomogram. The Kaplan-Meier method was used for survival analysis and the multivariable Cox proportional hazards regression model was used to identify independent predictors for recurrence-free survival (RFS) and overall survival (OS). Results: The sample included 244 patients who underwent surgical resection for primary lung adenocarcinoma. The training cohort included 199 patients (68 STAS-positive and 131 STAS-negative patients), and the testing cohort included 45 patients (15 STAS-positive and 30 STAS-negative patients). The preoperative CT features associated with STAS were shape, ground-glass opacity (GGO) ratio and spicules. The nomogram including these three factors had good discriminative power, and the areas under the ROC curve were 0.875 and 0.922 for the training and testing data sets, respectively, with well-fitted calibration curves. DCA showed that the nomogram was clinically useful. STAS-positive patients had significantly worse OS and RFS than STAS-negative patients (both P<0.01). OS and RFS at 5-year for STAS-positive patients were 63.1% and 59.5%, respectively. Multivariate analysis showed that age [hazard ratio (HR), 1.1; 95% confidence interval (CI): 1.035-1.169; P=0.002], diameter (HR, 1.06; 95% CI: 1.04-1.11; P=0.03) and surgical margin (HR, 32.8; 95% CI: 6.8-158.3; P<0.001) were independent risk factors for OS. Adjuvant therapy (HR, 7.345; 95% CI: 2.52-21.41; P<0.001), N stage (N2) (HR, 0.239; 95% CI: 0.069-0.828; P=0.02) and surgical margin (HR, 15.6; 95% CI: 5.9-41.1; P<0.001) were found to be independent risk factors for RFS. Conclusions: The outcome of STAS-positive patients was worse. The nomogram incorporating the identified CT features could be applied to facilitate individualized preoperative prediction of STAS and selection of rational therapy.

10.
Adv Mater ; : e2405165, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758975

ABSTRACT

Solid nanoparticle-mediated drug delivery systems are usually confined to nanoscale due to the enhanced permeability and retention (EPR) effect. However, they remain a great challenge for malignant glioma chemotherapy because of poor drug delivery efficiency and insufficient tumor penetration resulting from the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB). Inspired by biological microparticles (e.g., cells) with excellent adaptive deformation, we demonstrate that the adaptive microdrugs (even up to 3.0 µm in size) are more efficient than their nanodrugs (less than 200 nm in size) to cross BBB/BBTB and penetrate into tumor tissues, achieving highly efficient chemotherapy of malignant glioma. The distinct delivery of the adaptive microdrugs is mainly attributed to the enhanced interfacial binding and endocytosis via adaptive deformation. As expected, the obtained adaptive microdrugs exhibited enhanced accumulation, deep penetration, and cellular internalization into tumor tissues in comparison with nanodrugs, significantly improving the survival rate of glioblastoma mice. We believe that the bioinspired adaptive microdrugs enable them to efficiently cross physiological barriers and deeply penetrate tumor tissues for drug delivery, providing an avenue for the treatment of solid tumors. This article is protected by copyright. All rights reserved.

11.
Infect Drug Resist ; 17: 2069-2076, 2024.
Article in English | MEDLINE | ID: mdl-38807773

ABSTRACT

Objective: We compared the MeltPro assay to whole-genome sequencing (WGS) to investigate the molecular characterization of second-line injectable drug (SLID) resistance in multidrug-resistant tuberculosis (MDR-TB) isolates in Chongqing, China. Methods: A total of 122 MDR-TB patient isolates were collected between March 2019 and June 2020 from Chongqing Municipality, China. Conventional drug-susceptibility testing was performed using the proportion method, followed to generate minimum inhibitory concentrations (MICs) of SLIDs determined by microplate alamarblue assay. All strains were subjected to both MeltPro and WGS assays. Results: Among 122 MDR-TB isolates, 30 (24.6%), 22 (18.0%), and 14 (11.5%) were resistant to kanamycin (KM), amikacin (AM), and capreomycin (CM), respectively. Of the 31 SLID-resistant isolates, 24 (77.4%, 24/31) isolates harbored mutations in the rrs gene, with the most prevalent mutations in rrs A1401G (22/24, 91.7%). Mutation in rrs A1401G was associated with high levels of resistance to KM (MIC, ≥40 µg/mL) and AM (MIC, ≥64 µg/mL), but disparities in CM-resistance levels. Using phenotypic drug-susceptibility testing as gold standard, we found that the overall sensitivity of MeltPro and WGS was 87.1% and 90.32% and specificity 100% and 97.8%, respectively. Seven isolates had discordant results between phenotypic and genotypic resistance of SLIDs. Conclusion: MeltPro is a promising diagnostic tool for accurate identification of SLID-resistant MTB isolates with mutations in the rrs and eis genes. There was a disparity between MeltPro with WGS results in the proportion of heterogeneous drug-resistant bacteria with rrs mutation and limited probes. Resistance mechanisms other than genetic mutations will affect the consistency of MeltPro and WGS with phenotypic drug-susceptibility results.

12.
J Proteome Res ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810119

ABSTRACT

Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have reanalyzed publicly available mass spectrometry proteomics data sets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,565 phosphosites on serine, threonine, and tyrosine residues on rice proteins. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation likely caused by different kinase groups. We cross-referenced phosphosites against the rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or proximal to phosphosites that could cause loss of a site in a given rice variety and clustered the data to identify groups of sites with similar patterns across rice family groups. The data has been loaded into UniProt Knowledge-Base─enabling researchers to visualize sites alongside other data on rice proteins, e.g., structural models from AlphaFold2, PeptideAtlas, and the PRIDE database─enabling visualization of source evidence, including scores and supporting mass spectra.

13.
Adv Mater ; : e2403385, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769003

ABSTRACT

Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1T'-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm-3 under an ultrahigh scan rate of 1000 mV s-1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1T'-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm-3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1T'-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1T' phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination.

14.
Nat Commun ; 15(1): 4347, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773146

ABSTRACT

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Astrocytes , Depressive Disorder, Major , Mice, Knockout , Animals , Astrocytes/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Mice , Humans , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/genetics , Depressive Disorder, Major/pathology , Male , Female , Disease Models, Animal , Mice, Inbred C57BL , Neurons/metabolism , Stress, Psychological/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Behavior, Animal , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Depression/metabolism , Depression/genetics , Adult , Synaptic Transmission , Middle Aged
15.
Chem Commun (Camb) ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805194

ABSTRACT

For the first time, hierarchical porous amorphous metal-organic frameworks (HP-aMOFs) containing ultramicropores, micropores, and mesopores were synthesized by etching a composite of MOF glass (agZIF-76) and ZnO using ammonia. These materials show potential applications in the adsorption of C2 hydrocarbons.

16.
ACS Nano ; 18(22): 14403-14413, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38775684

ABSTRACT

The highly reversible plating/stripping of Zn is plagued by dendrite growth and side reactions on metallic Zn anodes, retarding the commercial application of aqueous Zn-ion batteries. Herein, a distinctive nano dual-phase diamond (NDPD) comprised of an amorphous-crystalline heterostructure is developed to regulate Zn deposition and mechanically block dendrite growth. The rich amorphous-crystalline heterointerfaces in the NDPD endow modified Zn anodes with enhanced Zn affinity and result in homogeneous nucleation. In addition, the unparalleled hardness of the NDPD effectively overcomes the high growth stress of dendrites and mechanically impedes their proliferation. Moreover, the hydrophobic surfaces of the NDPD facilitate the desolvation of hydrate Zn2+ and prevent water-mediated side reactions. Consequently, the Zn@NDPD presents an ultrastable lifespan exceeding 3200 h at 5 mA cm-2 and 1 mAh cm-2. The practical application potential of Zn@NDPD is further demonstrated in full cells. This work exhibits the great significance of a chemical-mechanical synergistic anode modification strategy in constructing high-performance aqueous Zn-ion batteries.

18.
J Phys Chem Lett ; 15(14): 3900-3906, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38564363

ABSTRACT

Nanopores with two-dimensional materials have various advantages in sensing, but the fast translocation of molecules hinders their scale-up applications. In this work, we investigate the influence of -F, -O, and -OH surface terminations on the translocation of peptides through MXene nanopores. We find that the longest dwell time always occurs when peptides pass through the Ti3C2O2 nanopores. This elongated dwell time is induced by the strongest interaction between peptides and the Ti3C2O2 membrane, in which the van der Waals interactions dominate. Compared to the other two MXene nanopores, the braking effect is indicated during the whole translocation process, which evidence the advantage of Ti3C2O2 in nanopore sensing. Our work demonstrates that membrane surface chemistry has a great influence on the translocation of peptides, which can be introduced in the design of nanopores for a better performance.


Subject(s)
Nanopores , Nitrites , Transition Elements , Peptides
19.
Am J Otolaryngol ; 45(4): 104278, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38604100

ABSTRACT

BACKGROUND: Merkel cell carcinoma (MCC) is an aggressive and rare neuroendocrine tumor, accounting for less than 1% of skin cancers. Metastasis primarily manifests in the cervical lymph nodes but rarely affect the thyroid. METHODS: We report a case of primary head and neck cutaneous MCC with metastasis to the thyroid gland. A review of the literature of MCC with thyroid metastasis was conducted. RESULTS: We identified five cases of MCC with thyroid metastasis. Primary sites included the distal upper and lower extremities, axilla, buttock, and groin. Treatment courses varied including thyroidectomy, immunotherapy, and expectant palliative measures. Time from initial diagnosis to thyroid metastasis ranged from four months to four years. Tissue diagnosis was achieved in 5 of 6 cases. CONCLUSIONS: MCC with thyroid metastasis is rare and likely represents aggressive disease. Despite advances in treatment and surveillance, outcomes for MCC remain poor. Ongoing research may establish predictors for treatment response.

20.
Adv Sci (Weinh) ; : e2307397, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650173

ABSTRACT

Li-rich Mn-based layered oxides (LLO) hold great promise as cathode materials for lithium-ion batteries (LIBs) due to their unique oxygen redox (OR) chemistry, which enables additional capacity. However, the LLOs face challenges related to the instability of their OR process due to the weak transition metal (TM)-oxygen bond, leading to oxygen loss and irreversible phase transition that results in severe capacity and voltage decay. Herein, a synergistic electronic regulation strategy of surface and interior structures to enhance oxygen stability is proposed. In the interior of the materials, the local electrons around TM and O atoms may be delocalized by surrounding Mo atoms, facilitating the formation of stronger TM─O bonds at high voltages. Besides, on the surface, the highly reactive O atoms with lone pairs of electrons are passivated by additional TM atoms, which provides a more stable TM─O framework. Hence, this strategy stabilizes the oxygen and hinders TM migration, which enhances the reversibility in structural evolution, leading to increased capacity and voltage retention. This work presents an efficient approach to enhance the performance of LLOs through surface-to-interior electronic structure modulation, while also contributing to a deeper understanding of their redox reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...