Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2403525, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762765

ABSTRACT

Heterogeneous catalysts embracing metal entities on suitable supports are profound in catalyzing various chemical reactions, and substantial synthetic endeavors in metal-support interaction modulation are made to enhance catalytic performance. Here, it is reported the loading of sub-2 nm Ru nanocrystals (NCs) on titanium nitride support (HTS-Ru-NCs/TiN) via a special Ru-Ti interaction using the high-temperature shock (HTS) method. Direct dechlorination of the adsorbed RuCl3, ultrafast nucleation process, and short coalescence duration at ultrahigh temperatures contribute to the immobilization of Ru NCs on TiN support via producing the Ru-Ti interfacial perimeter. HTS-Ru-NCs/TiN shows remarkable activity toward hydrogen evolution reaction (HER) in alkaline solution, yielding ultralow overpotentials of 16.3 and 86.6 mV to achieve 10 and 100 mA cm-2, respectively. The alkaline and anion exchange membrane water electrolyzers assembled using HTS-Ru-NCs/TiN yield 1.0 A cm-2 at 1.65 and 1.67 V, respectively, which validate its applicability in the hydrogen production industry. Theoretical simulations reveal the favorable formation of Ru─O and Ti─H bonds at the interfacial perimeters between Ru NCs and TiN, which accelerates the prerequisite water dissociation kinetics for enhanced HER activity. This exemplified work motivates the design of specific interfacial perimeters via the HTS strategy to improve the performance of diverse catalysis.

2.
J Colloid Interface Sci ; 665: 240-251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38531271

ABSTRACT

Seawater electrolysis to generate hydrogen offers a clean, green, and sustainable solution for new energy. However, the catalytic activity and durability of anodic catalysts are plagued by the corrosion and competitive oxidation reactions of chloride in high concentrations. In this study, we find that the additive CrO42- anions in the electrolyte can not only promote the formation and stabilization of the metal oxyhydroxide active phase but also greatly mitigate the adverse effect of Cl- on the anode. Linear sweep voltammetry, accelerated corrosion experiments, corrosion polarization curves, and charge transfer resistance results indicate that the addition of CrO42- distinctly improves oxygen evolution reaction (OER) kinetics and corrosion resistance in alkaline seawater electrolytes. Especially, the introduction of CrO42- even in the highly concentrated NaCl (2.5 M) electrolyte prolongs the durability of NiFe-LDH to almost five times the case without CrO42-. Density functional theory calculations also reveal that the adsorption of CrO42- can tune the electronic configuration of active sites of metal oxyhydroxides, enhance conductivity, and optimize the intermediate adsorption energies. This anionic additive strategy can give a better enlightenment for the development of efficient and stable oxygen evolution reactions for seawater electrolysis.

3.
ACS Sens ; 8(10): 3836-3844, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37782772

ABSTRACT

An ability to real-time and continuously monitor ammonium/ammonia profiles of coastal waters over a prolonged period in a simple and maintenance-free fashion would enable economic conducting large-scale assessments, providing the needed scientific insights to better control and mitigate the impact of eutrophication on coastal ecosystems. However, this is a challenging task due to the lack of capable sensors. Here, we demonstrate the use of a membrane-based conductometric ammonia sensing probe (CASP) for real-time monitoring of ammonia levels in coastal waters. A boric acid/glycerol receiving phase is investigated and innovatively utilized to overcome the high salinity of coastal water-induced analytical errors. A calibration-free approach is used to eliminate the need for ongoing calibration, while the issues concerning practical applications, such as salinity variation, ammonia intake capability, and biofouling, are systematically investigated. The field deployment at an estuary confluence water site over a half-moon cycle period confirms that CASP is capable of continuously monitoring the ammonia profile of coastal waters in real-time with high resolution and accuracy to unveil the dynamic ammonia concentration changes over a prolonged period.


Subject(s)
Ammonia , Ammonium Compounds , Ammonia/analysis , Ecosystem , Environmental Monitoring , Water
4.
Angew Chem Int Ed Engl ; 62(38): e202309784, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37539978

ABSTRACT

Metal single atoms (SAs) anchored in carbon support via coordinating with N atoms are efficient active sites to oxygen reduction reaction (ORR). However, rational design of single atom catalysts with highly exposed active sites is challenging and urgently desirable. Herein, an anion exchange strategy is presented to fabricate Fe-N4 moieties anchored in hierarchical carbon nanoplates composed of hollow carbon spheres (Fe-SA/N-HCS). With the coordinating O atoms are substituted by N atoms, Fe SAs with Fe-O4 configuration are transformed into the ones with Fe-N4 configuration during the thermal activation process. Insights into the evolution of central atoms demonstrate that the SAs with specific coordination environment can be obtained by modulating in situ anion exchange process. The strategy produces a large quantity of electrochemical accessible site and high utilization rate of Fe-N4 . Fe-SA/N-HCS shows excellent ORR electrocatalytic performance with half-wave potential of 0.91 V (vs. RHE) in 0.1 M KOH, and outstanding performance when used in rechargeable aqueous and flexible Zn-air batteries. The evolution pathway for SAs demonstrated in this work offers a novel strategy to design SACs with various coordination environment and enhanced electrocatalytic activity.

5.
Adv Mater ; 34(2): e2104667, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34693576

ABSTRACT

Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm-2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.

6.
Nanoscale ; 13(48): 20324-20353, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34870672

ABSTRACT

Electrocatalytic energy conversion between electricity and chemical bonding energy is realized through redox reactions with multiple charge transfer steps at the electrode-electrolyte interface. The surface atomic structure of the electrode materials, if appropriately designed, will provide an energetically affordable pathway with individual reaction intermediates that not only reduce the thermodynamic energy barrier but also allow an acceptably fast kinetic rate of the overall redox reaction. As one of the most abundant and stable forms, oxides of transitional metals demonstrated promising electrocatalytic activities towards multiple important chemical reactions. In this topical review, we attempt to discuss the possible avenues to construct the electrocatalytic active surface for this important class of materials for two essential chemical reactions for water splitting. A general introduction of the electrochemical water splitting process on the electrocatalyst surface with applied potential will be provided, followed by a discussion on the fundamental charge transfers and the mechanism. As the generally perceived active sites are chemical reaction dependent, we offer a general overview of the possible approaches to construct or create electrocatalytically active sites in the context of surface atomic structure engineering. The review concludes with perspectives that summarize challenges and opportunities in electrocatalysis and how these can be addressed to unlock the electrocatalytic potentials of the metal oxide materials.

7.
ACS Appl Mater Interfaces ; 5(3): 997-1002, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23320959

ABSTRACT

A facile strategy to synthesize the novel composite paper of graphene nanosheets (GNS) coated Co(3)O(4) fibers is reported as an advanced anode material for high-performance lithium-ion batteries (LIBs). The GNS were able to deposit onto Co(3)O(4) fibers and form the coating via electrostatic interactions. The unique hybrid paper is evaluated as an anode electrode for LIBs, and it exhibits a very large reversible capacity (∼840 mA h g(-1) after 40 cycles), excellent cyclic stability and good rate capacity. The substantially excellent electrochemical performance of the graphene/Co(3)O(4) composite paper is the result from its unique features. Notably, the flexible structure of graphenic scaffold and the strong interaction between graphene and Co(3)O(4) fibers are beneficial for providing excellent electronic conductivity, short transportation length for lithium ions, and elastomeric space to accommodate volume varies upon Li(+) insertion/extraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...