Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(5): e03919, 2020 May.
Article in English | MEDLINE | ID: mdl-32478184

ABSTRACT

APOE4 is a major genetic risk factor for Alzheimer's disease and high amyloid-ß (Aß) levels in the brain are a pathological hallmark of the disease. However, the contribution of specific APOE-modulated Aß-dependent and Aß-independent functions to cognitive decline remain unclear. Increasing evidence supports a role of APOE in modulating cerebrovascular function, however whether ameliorating this dysfunction can improve behavioral function is still under debate. We have previously demonstrated that systemic epidermal growth factor (EGF) treatment, which is important for vascular function, at early stages of pathology (treatment from 6 to 8 months) is beneficial for recognition and spatial memory and cerebrovascular function in female mice that express APOE4. These data raise the important question of whether EGF can improve APOE4-associated cerebrovascular and behavioral dysfunction when treatment is initiated at an age of advanced pathology. Positive findings would support the development of therapies that target cerebrovascular dysfunction associated with APOE4 in aging and AD in individuals with advanced cognitive impairment. Therefore, in this study female mice that express APOE4 in the absence (E4FAD- mice) or presence (E4FAD+ mice) of Aß overproduction were treated from 8 to 10 months of age systemically with EGF. EGF treatment mitigated behavioral dysfunction in recognition memory and spatial learning and improved hippocampal neuronal function in both E4FAD+ and E4FAD- mice, suggesting that EGF treatment improves Aß-independent APOE4-associated deficits. The beneficial effects of EGF treatment on behavior occurred in tandem with improved markers of cerebrovascular function, including lower levels of fibrinogen, lower permeability when assessed by MRI and higher percent area coverage of laminin and CD31 in the hippocampus. These data suggest a mechanistic link among EGF signaling, cerebrovascular function and APOE4-associated behavioral deficits in mice with advanced AD-relevant pathology.

2.
Mol Neurobiol ; 56(11): 7708-7718, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31104296

ABSTRACT

Recent evidence indicates that disruption of epidermal growth factor (EGF) signaling by mutant huntingtin (polyQ-htt) may contribute to the onset of behavioral deficits observed in Huntington's disease (HD) through a variety of mechanisms, including cerebrovascular dysfunction. Yet, whether EGF signaling modulates the development of HD pathology and the associated behavioral impairments remain unclear. To gain insight on this issue, we used the R6/2 mouse model of HD to assess the impact of chronic EGF treatment on behavior, and cerebrovascular and cortical neuronal functions. We found that bi-weekly treatment with a low dose of EGF (300 µg/kg, i.p.) for 6 weeks was sufficient to effectively improve motor behavior in R6/2 mice and diminish mortality, compared to vehicle-treated littermates. These beneficial effects of EGF treatment were dissociated from changes in cerebrovascular leakiness, a result that was surprising given that EGF ameliorates this deficit in other neurodegenerative diseases. Rather, the beneficial effect of EGF on R6/2 mice behavior was concomitant with a marked amelioration of cortical GABAergic function. As GABAergic transmission in cortical circuits is disrupted in HD, these novel data suggest a potential mechanistic link between deficits in EGF signaling and GABAergic dysfunction in the progression of HD.


Subject(s)
Epidermal Growth Factor/pharmacology , GABAergic Neurons/pathology , Huntington Disease/physiopathology , Motor Activity/drug effects , Animals , Cerebral Cortex/pathology , Disease Models, Animal , Epidermal Growth Factor/therapeutic use , Female , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Glutamate Decarboxylase/metabolism , Huntington Disease/drug therapy , Male , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...