Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 271(Pt 2): 132511, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38772471

ABSTRACT

Green Tea polyphenols (GTP) are important bioactive compounds with excellent physiological regulation functions. However, they are easily destroyed by the gastric environment during digestion. In this work, a sodium alginate (SA)-gellan gum (GG) interpenetrating network (IPN) hydrogel was synthesized to protect and delivery GTP. The ratio of SA/GG significantly affects the network structure of IPN hydrogels and the performance of delivering GTP. The hydrogel formed by interpenetrating 20 % GG with 80 % SA as the main network had the highest water uptake (55 g/g), holding capacity (950 mg/g), and freeze-thaw stability, with springiness reaching 0.933 and hardness reaching 1300 g, which due to the filling effect and non-covalent interaction. Rheological tests showed that the crosslink density of IPN hydrogel in SA-dominated network was improved by the addition of GG to make it better bound to GTP, and the higher water uptake meant that the system could absorb more GTP-containing solution. This IPN hydrogel maintained 917.3 mg/g encapsulation efficiency at the highest loading capacity (1080 mg/g) in tests as delivery system. In in vitro digestion simulations, owing to the pH responsiveness, the IPN hydrogel reduced the loss of GTP in gastric fluid, achieving a bioaccessibility of 71.6 % in the intestinal tract.

2.
Article in English | MEDLINE | ID: mdl-38815355

ABSTRACT

This study delves into the dynamic interplay of volatile compounds, free amino acids, and metabolites, meticulously exploring their transformations during oat fermentation. Analysis via gas chromatography-mass spectrometry (GC-MS) unveiled significant alterations: 72 volatile compounds in unfermented oats (NFO) and 60 in fermented oats (FO), reflecting the profound impact of Saccharomyces cerevisiae TU11 and Lactobacillus plantarum Heal19 on oat constituents. A marked increase in Heptane (5.7-fold) and specific alcohol compounds, like 2-methyl-1-propanol, 3-methyl-1-butanol, and Phenylethyl alcohol in FO samples, while reductions in Hexanal, Hexanoic acid, and Acetic acid were observed. Notably, 4 phenolic compounds emerged post-fermentation, revealing diverse microbial actions in flavor modulation. Orthogonal-partial least squares discriminant analysis (OPLS-DA) indicated a clear separation between NFO and FO, demonstrating distinct volatile compound profiles. Further analysis revealed a noteworthy decrease in all free amino acids except for a significant increase in serine during fermentation. Differential metabolite screening identified 354 metabolites with 219 upregulated and 135 down-regulated, uncovering critical markers like isophenoxazine and imidazole lactic acid. Correlation analyses unveiled intricate relationships between volatile compounds and diverse metabolites, illuminating underlying biochemical mechanisms shaping oat flavor profiles during fermentation.

3.
J Sci Food Agric ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624005

ABSTRACT

BACKGROUND: The material composition significantly influences the oil absorption and quality characteristics of fried food products. The oil absorption of restructured potato chips is highly dependent on the structural properties of the restructured potato-based dough produced prior to frying. In this study, three types of starch were added to modify the structure of restructured potato-based dough, allowing the production of potato chips with less oil absorption. RESULTS: Distinct differences were observed among the three types of starch in terms of amylose content, chain length distribution, swelling power, solubility, crystalline structure and pasting properties. The addition of wheat starch, corn starch and tapioca starch changed the rheological properties, water distribution and strength of the restructured dough. Importantly, adding wheat starch and corn starch significantly lowered the oil content of potato chips by 7.94% and 13.06%, respectively. The reduction in oil absorption by potato chips was attributed to the increased strength of the starchy gel network of the dough, a slower rate of water evaporation and a limitation of dough expansion during frying. CONCLUSION: Adding wheat starch or corn starch to restructured potato-based dough resulted in a decrease in the oil absorption of potato chips by creating a stronger starchy gel network in the dough. This study could guide the development of suitable material compositions, which are important for producing fried food products with lower oil content. © 2024 Society of Chemical Industry.

4.
Int J Biol Macromol ; 268(Pt 2): 131844, 2024 May.
Article in English | MEDLINE | ID: mdl-38663708

ABSTRACT

Starch is a key element in fried potato crisps, however, the effect of starch granule size on oil absorption of the product have yet to be fully investigated. The study explored the impact of starch granule size on both the dough characteristics and oil absorption in potato crisps. The dough composed of small-sized potato granules showed more compact and uniform network system. Additionally, X-ray Microscope analysis showed that potato crisps prepared with small-sized potato granules had limited matrix expansion and fewer pores, cracks, and voids. The small-sized potato and small-sized wheat starches granule addition crisps displayed a significantly greater average cell thickness (52.05 and 53.44 µm) than other samples, while exhibiting notably lower average porosity (61.37 % and 60.28 %) compared to other samples. Results revealed that potato crisps with medium and small potato granules had 12.91 % and 21.92 % lower oil content than those containing large potato starch. Potato crisps with B-type wheat starch showed 16.36 % less oil absorption than those with A-type wheat starch. Small-sized starches significantly influence the dough structure and contribute to the reduction of oil absorption in fried products. The generated insights may provide monitoring indexes for cultivating potato varieties with low oil absorption.


Subject(s)
Solanum tuberosum , Starch , Solanum tuberosum/chemistry , Starch/chemistry , Particle Size , Cooking , Porosity , Flour/analysis , Absorption, Physicochemical , Plant Oils/chemistry
5.
Food Chem ; 448: 139145, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38555692

ABSTRACT

This study aimed to prepare an all-natural water-in-oil high internal phase Pickering emulsion (W/O-HIPPE) using diosgenin/soybean phosphatidylethanolamine complex (DGSP) and investigate the 3D printing performance. Results suggested that the self-assembly of diosgenin crystal was modified by SP in DGSP (diosgenin-SP ratios at 3:1 and 1:1), revealing a variation from large-size outward radiating needle-like to small-size granular-like shape, which facilitated closely packing at the interface. Hydrophilicity of DGSP was also increased (contact angle varying from 133.3 o to 106.4 o), ensuring more adequate interfacial adsorption to reduce interfacial tension more largely (6.5 mN/m). Thus, the W/O-HIPPE made by DGSP with diosgenin-SP = 1:1, exhibited smaller droplets and better freeze/thawing stability. The W/O-HIPPE was also measured improved rheological properties for 3D printing: satisfied shear-thinning behavior, higher recovery and self-supporting (viscoelasticity and deformation resistance). Consequently, the W/O-HIPPE allowed for printing more delicate patterns. This work provided guidance to prepare W/O-HIPPE for 3D printing.


Subject(s)
Diosgenin , Emulsions , Phosphatidylethanolamines , Printing, Three-Dimensional , Water , Emulsions/chemistry , Diosgenin/chemistry , Phosphatidylethanolamines/chemistry , Water/chemistry , Glycine max/chemistry , Particle Size , Hydrophobic and Hydrophilic Interactions , Rheology
6.
Food Res Int ; 178: 113906, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309900

ABSTRACT

Surface profiles are important evaluation indices for oil absorption behavior of fried foods. This research established two intelligent models of partial least-squares regression (PLSR) and back propagation artificial neural network (BP-ANN) for monitoring the oil absorption behavior of French fries based on the surface characteristics. Surface morphology and texture of French fries by rapeseed oil (RO) and high-oleic peanut oil (HOPO) at different temperatures were investigated. Results showed that oil content of samples increased with frying temperature, accounting for 37.7% and 41.4% of samples fried by RO and HOPO respectively. The increase of crust ratio, roughness and texture parameters (Fm, Nwr, fwr, Wc) and the decrease of uniformity were observed with the frying temperature. Coefficients of prediction set of PLSR and BP-ANN models were more than 0.93, which indicated that surface features combined with chemometrics were rapid and precise methods for determining the oil content of French fries.


Subject(s)
Cooking , Solanum tuberosum , Cooking/methods , Rapeseed Oil , Peanut Oil , Hot Temperature
7.
Int J Biol Macromol ; 254(Pt 1): 127730, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287588

ABSTRACT

In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of ß-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of ß-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.


Subject(s)
Curcumin , Schizophyllum , Emulsions/chemistry , beta Carotene/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Schizophyllum/metabolism , Fermentation , Polysaccharides/chemistry
8.
Int J Biol Macromol ; 259(Pt 1): 128796, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104679

ABSTRACT

A cellulose suspension and tannic acid (TA) were co-sonicated to prepare TA-incorporated nanocellulose hydrogels with the aim of improving the physical and oxidative stability of high-internal-phase emulsions (HIPEs). Cellulose nanocrystal (CNC) hydrogels were used to stabilize HIPEs, relying on the interfacial adsorption behavior of CNCs and the reversible gelation properties of hydrogels. TA was incorporated due to its ability to improve emulsification performance and antioxidant properties. Introducing TA enhanced the gel strength of hydrogels by decreasing the interfibrillar distance. The utilization of CNC-TA hydrogels effectively improved physical properties of HIPEs. This improvement included a reduction in droplet size from the initial 103.41 µm to 39.66 µm, an enhancement of the gel structure, and an improvement in storage stability. A denser and orderly interfacial structure was formed in CNCs-TA hydrogel stabilized HIPEs due to anchoring TA at the interface driven by the hydrogen-bonding interaction between CNCs and TA. This densely interfacial layer with good antioxidant activity markedly enhanced the oxidative stability of emulsions, as evidenced by the low level of oxidation products in HIPEs. This study has the potential to extend the utilization of CNC-stabilized emulsions to new applications in the food, cosmetic, and pharmaceutical industries.


Subject(s)
Nanoparticles , Polyphenols , Water , Emulsions/chemistry , Water/chemistry , Cellulose/chemistry , Antioxidants/pharmacology , Nanoparticles/chemistry , Oxidative Stress
9.
Food Chem ; 439: 138144, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38100870

ABSTRACT

Water-in-oil (W/O) emulsion holds great potential in designing fat-reduced foods. However, due to the lack of W/O-type surfactant, formation of all-natural W/O emulsion is challenged. This study aimed to investigate the effect of oil phase on interfacial adsorption of soybean phosphatidylethanolamine (SP) and stability of W/O emulsion. Five oils, including medium chain triglycerides oil (MO), coconut oil (CO), palm kernel oil (PKO), sunflower oil (SO) and rapeseed oil (RO), were selected. Results showed that diffusion rate of SP to the interface ranked as MO > CO > PKO > SO ≈ RO, increasing interfacial adsorption from 50.2 % to 85.3 %. Higher interfacial adsorption improved the deformation resistance of interfacial layer, causing more significant decrease in interfacial tension (3.54 mN/m). So, the largest water fraction (65 %) was stabilized by SP with MO and CO, and exhibited smaller droplet sizes and better stability. Consequently, shorter-chain oil was more suitable for preparing W/O emulsions.


Subject(s)
Glycine max , Water , Emulsions , Adsorption , Phosphatidylethanolamines , Oils , Rapeseed Oil
10.
Int J Biol Macromol ; 253(Pt 8): 127559, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37865367

ABSTRACT

The interaction between wheat germ polysaccharide (WGP) and gut microbiota remains relatively less investigated. Thus, this study explored their interaction via in vitro batch fecal fermentation. WGP elevated dramatically the relative abundances of Bacteroides (especially Ba. xylanisolvens, Ba. uniformis, and Ba. intestinalis), Bifidobacterium (especially Bi. pseudocatenulatum) and Eubacterium, and decreased Alistipes, Klebsiella, Bilophila and Sutterella. Moreover, the metabolomics and Spearman correlation results showed that these alterations in gut microbiota gave rise to over 13-fold augmentation in the quantities of short-chain fatty acids (SCFAs) and indole-3-lactic acid, as well as 7.17- and 4.23-fold increase in acetylcholine and GABA, respectively, at 24 h of fermentation. Interestingly, PICRUSt analysis showed that WGP markedly reduced aging pathway, and enriched nervous system pathway. Therefore, the D-gal-induced aging mice model was used to further verify these effects. The results demonstrated that WGP had a protective effect on D-gal-induced behavioral deficits, particularly in locomotor activity, and spatial and recognition memory. WGP elevated dramatically the relative abundances of Bacteroides (especially Ba. sartorii and Ba. uniformis), Bifidobacterium (especially Bi. pseudocatenulatum) and Parabacteroides, and decreased Alistipes and Candidatus Arthromitus. These findings highlight the potential utility of WGP as a dietary supplement for retarding the aging process and mitigating age-associated learning and memory decline via the targeted enrichment of Bacteroides and Bifidobacterium and the related metabolites.


Subject(s)
Bifidobacterium pseudocatenulatum , Gastrointestinal Microbiome , Animals , Mice , Fermentation , Triticum , Polysaccharides/pharmacology , Polysaccharides/metabolism , Bacteroides , Feces/microbiology , Bifidobacterium/metabolism , Bacteroidetes
11.
Food Res Int ; 172: 113060, 2023 10.
Article in English | MEDLINE | ID: mdl-37689854

ABSTRACT

In this study, Pichia kluyveri (P. kluyveri) and Lactobacillus plantarum (L. plantarum) were sequentially inoculated into a plant-based beverage consisting of bananas, broccoli, and wolfberries. The physicochemical characteristics, functional components, and taste of it at different stages were determined. After 8-d fermentation, the viable counts of P. kluyveri and L. plantarum were 6.50 log CFU/mL and 8.43 log CFU/mL, respectively. The ethanol was <0.5 % (v/v). Compared with control group, the superoxide dismutase (SOD) activity increased by 96.08 folds and total phenolics content increased by 1.09 folds. The contents of lactic acid, protocatechuic acid, and chlorogenic acid exhibited an upgrade trend, whereas the contents of caffeic acid and malic acid presented a downward tendency. Some organic acids had positive correlations with sensory quality, especially sourness. In addition, the γ-amino butyric acid (GABA) concentration and antioxidant activity were also improved during fermentation. Results showed the nutritional functional properties and sensory quality of this beverage could be improved through co-fermentation of P. kluyveri and L. plantarum.


Subject(s)
Lactobacillus plantarum , Fermentation , Fermented Beverages , Pichia
12.
Food Res Int ; 172: 113118, 2023 10.
Article in English | MEDLINE | ID: mdl-37689880

ABSTRACT

Water-in-oil (W/O) emulsion is promising to design fat-reduced foods for 3D printing. In this study, oleogel-based W/O emulsion containing 65% water fraction was prepared by sunflower wax (SW, 1.0 wt%) and soybean phosphatidylethanolamine (SP, 0.5 wt%) with stability exceeding 30 days. Besides reducing interfacial tension, from X-ray diffraction and rheological results, SP was considered co-oleogelator to change the crystal habit of SW to enhance the external SW-based oleogel structure. The strong external oleogel structure was not only good for reducing droplets movements to improve physical stability, but facilitating the molding and supporting abilities of the emulsion gel in 3D printing. Based on rheological measurements, the emulsion gels were shown improved printing performance with SP increasing: extrusion (shear-thinning behavior), recovery (excellent thixotropy), and self-supporting (sufficient storage modulus and deformation resistance). In 3D printing, the emulsion gels with growing SP were displayed better shape retention and allowed printing the designs with more delicate and vivid features. This study provided new insight for W/O emulsion formation using natural ingredients for 3D printing to create fat-reduced foods.


Subject(s)
Asteraceae , Printing, Three-Dimensional , Emulsions , Water
13.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37724529

ABSTRACT

Functional oil is type of oil that is beneficial to human health and has nutritional value, however, functional oils are rich in bioactive substances such as polyunsaturated fatty acids which are sensitive to environmental factors and are susceptible to oxidation or decomposition. Construction of emulsion-based oil powder is a promising approach for improving the stability and solubility of functional oils. However, the low effective loading of oil in powder is the main challenge limiting encapsulation technology. This manuscript focuses on reviewing the current research progress of emulsion-based functional oil powder construction and systematically summarizes the processing characteristics of emulsion-based oil powder with high payload and summarizing the strategies to enhance the payload of powder in term of emulsification and drying, respectively. The impact of emulsion formation on oil powder production is discussed from different characteristics of emulsions, including emulsion composition, emulsification methods and emulsion types. In addition, the current status of improving material loading performance by various modifications to the drying technology is discussed, including the addition of drying processing additives, changes in drying parameters and the effect of innovative technological means.

14.
Foods ; 12(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37761096

ABSTRACT

W/O emulsions are commonly used to prepare stable low-fat products, but their poor stability limits widespread applications. In this study, sucrose ester (SE) and beeswax were utilized to prepare an oil dispersion system in rapeseed oil, which was used as the external oil phase to further synergistically construct the W/O emulsion systems. The results show that spherical and fine crystals are formed under the synergistic effect of SE and BW (1.5 SE:0.5 BW). In this state, a dense interfacial crystal layer was easily formed, preventing droplet aggregation, leading to droplet size reduction (1-2 µm) and tight packing, improving viscoelasticity and resistance to deformation, and increasing the recovery rate (52.26%). The long-term stability of W/O emulsions containing up to 60 wt% water was found to be more than 30 days. The increase in the aqueous phase led to droplet aggregation, which increased the viscosity (from 400 Pa·s to 2500 Pa·s), improved the structural strength of the emulsion, and increased the width of the linear viscoelastic region (from 1% strain to 5% strain). These findings provide some technical support for the further development of stable low-fat products.

15.
Int J Biol Macromol ; 242(Pt 1): 124667, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37121416

ABSTRACT

The aim of this study was to constitute microcapsule systems with high oil loading capacity by octenyl succinic anhydride (OSA) starch, whey protein isolate (WPI) and inulin (IN) substrates to provide a new method for encapsulating diacylglycerol oil. Specifically, this study characterizes the physicochemical properties and reconstitution capacity of highly oil loading diacylglycerol microcapsules by comparing the wall encapsulation capacity of the binary wall system OSA-IN, WPI-IN and the ternary wall system WPI-OSA (1:9, 5:5, 9:1)-IN for diacylglycerol oil. It was found that WPI-OSA (5:5)-IN significantly improved the water solubility of microcapsules (86.11 %) compared to OSA-IN microcapsules, and the addition of WPI made the surface of microcapsules smoother and increased the thermal stability and solubility of microcapsules; the addition of OSA enhanced the wettability of microcapsules compared to WPI-IN. In addition, WPI-OSA (5:5)-IN microcapsules have the highest encapsulation efficiency (96.03 %), high emulsion stability after reconstitution, and the smallest droplet size (212.83 nm) after 28 d. Therefore, the WPI-OSA-IN composite system is suitable for the production of highly oil-loaded microencapsulated systems with excellent reconstitution ability to expand the application of diacylglycerol oil.


Subject(s)
Inulin , Starch , Starch/chemistry , Whey Proteins , Capsules/chemistry , Succinic Anhydrides/chemistry , Diglycerides , Emulsions/chemistry
16.
Food Res Int ; 165: 112458, 2023 03.
Article in English | MEDLINE | ID: mdl-36869475

ABSTRACT

Pickering HIPEs have received tremendous attention in recent years due to their superior stability and unique solid-like and rheological properties. Biopolymer-based colloidal particles derived from proteins, polysaccharides and polyphenols have been demonstrated to be safety stabilizers for the construction of Pickering HIPEs, which can meet the demands of consumers for "all-natural" products and provide "clean-label" foods. Furthermore, the functionality of these biopolymers can be further extended by forming composite, conjugated and multi-component colloidal particles, which can be used to modulate the properties of the interfacial layer, thereby adjusting the performance and stability of Pickering HIPEs. In this review, the factors affecting the interfacial behavior and adsorption characteristics of colloidal particles are discussed. The intrinsic composition of matrix components and fundamental characteristics of Pickering HIPEs are emphatically summarized, and the emerging applications of Pickering HIPEs in the food industry are reviewed. Inspired by these findings, future perspectives concerning this field are also put forward, including (1) the exploration of the interactions between biopolymers used to produce Pickering HIPEs and target food ingredients, and the influence of the added biopolymers on the flavor and mouthfeel of the products, (2) the investigation of the digestion properties of Pickering HIPEs under oral administration, and (3) the fabrication of stimulus-responsive or transparent Pickering HIPEs. This review will give a reference for exploring more natural biopolymers for Pickering HIPEs application development.


Subject(s)
Biological Products , Emulsions , Biopolymers , Administration, Oral , Adsorption
17.
Int J Biol Macromol ; 239: 124101, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36958452

ABSTRACT

The delivery vehicles based on protein-polysaccharide-polyphenol are promising methods to encapsulate bioactive components with the aim of improving their solubility and bioavailability. In this study, chitosan-protocatechuic acid (CSPA) conjugate interacted with phosphorylated perilla protein isolate (LZPI) to engineer a composite antioxidant interfacial architecture to delay lipid oxidation and regulate the stability and digestion profiles of ß-carotene loaded in high internal phase emulsions (HIPEs). Compared to LZPI, the LZPI-CSPA complexes formed by hydrogen bond and electrostatic interaction showed improved wettability and reduced interfacial tension, which facilitated their adsorption at the interface. Furthermore, the addition of CSPA conjugate promoted the formation of interconnected network structure of LZPI-stabilized HIPEs, thereby endowing them with excellent viscoelasticity and storage stability. Moreover, the denser interfacial film based on LZPI-CSPA complexes effectively decreased the contents of lipid hydroperoxide and malondialdehyde in HIPEs, thus improving their oxidation stability. The encapsulation of ß-carotene by LZPI-CSPA complex-stabilized HIPEs could further enhance its retention rate against different environmental stresses. After in vitro simulated digestion, the bioaccessibility of ß-carotene also improved, reaching the highest value in HIPEs containing 1.5 % CSPA conjugate. These findings will give a reference for the fabrication of delivery vehicles to enhance the stability and bioaccessibility of bioactive components.


Subject(s)
Chitosan , Emulsions/chemistry , beta Carotene/chemistry , Nutrients , Particle Size
18.
Foods ; 12(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36832790

ABSTRACT

Flos sophorae immaturus (FSI) is considered to be a natural hypoglycemic product with the potential for a-glucosidase inhibitory activity. In this work, the polyphenols with α-glucosidase inhibition in FSI were identified, and then their potential mechanisms were investigated by omission assay, interaction, type of inhibition, fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry and molecular docking analysis. The results showed that five polyphenols, namely rutin, quercetin, hyperoside, quercitrin and kaempferol, were identified as a-glucosidase inhibitors with IC50 values of 57, 0.21, 12.77, 25.37 and 0.55 mg/mL, respectively. Quercetin plays a considerable a-glucosidase inhibition role in FSI. Furthermore, the combination of quercetin with kaempferol generated a subadditive effect, and the combination of quercetin with rutin, hyperoside and quercitrin exhibited an interference effect. The results of inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry and molecular docking analysis showed that the five polyphenols were mixed inhibitors and significantly burst the fluorescence intensity of α-glucosidase. Moreover, the isothermal titration calorimetry and molecular docking analysis showed that the binding to α-glucosidase was a spontaneous heat-trapping process, with hydrophobic interactions and hydrogen bonding being the key drivers. In general, rutin, quercetin, hyperoside, quercitrin and kaempferol in FSI are potential α-glucosidase inhibitors.

19.
Foods ; 12(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36832934

ABSTRACT

Agaricus bisporus polysaccharide (ABP) is an important active component in edible mushrooms, but its interaction with gut microbiota is unclear. Therefore, this study evaluated the effect of ABP on the composition and metabolites of human gut microbiota by in vitro batch fermentation. The main degrading bacteria for ABP were Bacteroides, Streptococcus, Enterococcus, Paraprevotella, Bifidobacterium, Lactococcus, Megamonas, and Eubacterium, whose relative abundances increased during 24 h of in vitro fermentation. The short-chain fatty acids (SCFAs) content also increased more than 15-fold, accordingly. Moreover, the effects of ABP on the relative abundance of Bacteroides (Ba.) and Bifidobacterium (Bi.) at the species level were further determined. ABP can enrich Ba. thetaiotaomicron, Ba. intestinalis, Ba. uniformis, and Bi. longum. PICRUSt analysis revealed that the catabolism of ABP was accompanied by changes in the metabolism of carbohydrates, nucleotides, lipids and amino acids, which were also supported by metabonomic results. It is worth mentioning that, after 24 h fermentation, the relative amounts of gamma-aminobutyric acid (GABA), nicotinamide and nicotinamide adenine dinucleotide (NAD+) had 14.43-, 11.34- and 15.36-fold increases, respectively, which were positively related to Bacteroides (Ba. thetaiotaomicron, Ba. intestinalis), Streptococcus, and Bi. longum (|r| > 0.98). These results laid the research foundation for exploring ABP as a potential prebiotic or dietary supplement for the targeted regulation of gut microbiota or metabolites.

20.
Foods ; 12(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36766199

ABSTRACT

Flos Sophorae Immaturus (FSI) contains a large number of bioactive substances with antioxidant and hypoglycaemic activity. However, a feasible drying process plays an important role in the retention of its biological activity. The present work investigated the effects of ultrasound-assisted vacuum drying (UAVD) on FSI samples in terms of drying time, colour, microstructure, and total flavonoid content (TFC). Meanwhile, the antioxidant activity and α-glucosidase inhibition activity were also evaluated. The results show that the drying time of UVAD samples was decreased by 40% compared to that of the single vacuum-dried (VD) samples (600 W for 10 min). The cellular porous structures of FSI tissue were formed by UAVD, which promoted the migration of water from the inside to the outside. Furthermore, samples treated by UAVD exhibited better antioxidant activities and α-glucosidase and α-amylase inhibition capacities, with DPPH (81.86%), ABTS (88.61%), FRAP (83.05%), α-glucosidase inhibition capacity (89%), α-amylase (85%), drying time (3 h), and total aberration (ΔE) (1.63) being the highest characteristic traits. In this condition, the highest levels of total flavonoid content (TFC), rutin, quercetin, kaempferol, isorhamnetin, and genistein were obtained with 266.94, 239.46, 35.56, 8.54, 10.37, and 5.64 mg/g DW, respectively. The results confirm that UAVD is a novel method that significantly reduced the VD time and promoted the release of the bioactive substances of FSI.

SELECTION OF CITATIONS
SEARCH DETAIL
...