Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Front Nutr ; 11: 1373709, 2024.
Article in English | MEDLINE | ID: mdl-38751744

ABSTRACT

Objective: The oxidative balance score (OBS) is important for determining the cause of obesity and its complications. We aimed to evaluate the association between OBS and obesity and other segmental body composition parameters among young and middle-aged U.S. adults. Methods: 9,998 participants from the National Health and Nutrition Examination Survey 2011-2018 were included. Lean mass percentage (LM%) and FM% were evaluated by dual-energy x-ray absorptiometry. Obesity was defined as body FM% ≥25% in men and ≥ 35% in women. The OBS was scored by 5 pro-oxidant and 21 antioxidant factors. Associations of quartiles of OBS with obesity risk were estimated using multivariable logistic regression models. Multivariable linear regression was conducted to estimate the association between OBS and segmental body composition measures including the arm LM%, leg LM%, torso LM%, whole LM%, arm FM%, leg FM%, torso FM% and total FM%. Results: Compared to participants in the lowest quartile of OBS, those in the highest quartile of OBS were associated with a lower risk of BMI-defined obesity BMI-defined obesity [0.43 (0.36, 0.50)] and FM%-related obesity [0.43 (0.35, 0.52)]. Additionally, OBS was negatively associated with FM% of the limb and torso but positively associated with the percentage of lean mass (LM%) of the limb and trunk. Conclusion: OBS was negatively associated with the risk of obesity and segmental FM%, but was positively associated with segmental LM% among US adults, indicating that adhering to an anti-oxidative diet and lifestyle management may be beneficial for preventing segmental obesity.

2.
Theranostics ; 13(6): 1759-1773, 2023.
Article in English | MEDLINE | ID: mdl-37064880

ABSTRACT

Aims: The invasive intramyocardial injection of mesenchymal stromal cells (MSCs) allows for limited repeat injections and shows poor therapeutic efficacy against ischemic heart failure. Intravenous injection is an alternative method because this route allows for repeated, noninvasive, and easy delivery. However, the lack of targeting of MSCs hinders the ability of these cells to accumulate in the ischemic area after intravenous injections. We investigated whether and how the overexpression of colony-stimulating factor 2 receptor beta subunit (CSF2RB) may regulate the cardiac homing of MSCs and their cardioprotective effects against ischemic heart failure. Methods and Results: Adult mice were subjected to myocardial ischemia/reperfusion (MI/R) or sham operations. We observed significantly higher CSF2 protein expression and secretion by the ischemic heart from 1 day to 2 weeks after MI/R. Mouse adipose tissue-derived MSCs (ADSCs) were infected with adenovirus harboring CSF2RB or control adenovirus. Enhanced green fluorescent protein (EGFP)-labeled ADSCs were intravenously injected into MI/R mice every three days for a total of 7 times. Compared with ADSCs infected with control adenovirus, intravenously delivered ADSCs overexpressing CSF2RB exhibited markedly increased cardiac homing. Histological analysis revealed that CSF2RB overexpression significantly enhanced the ADSC-mediated proangiogenic, antiapoptotic, and antifibrotic effects. More importantly, ADSCs overexpressing CSF2RB significantly increased the left ventricular ejection fraction and cardiac contractility/relaxation in MI/R mice. In vitro experiments demonstrated that CSF2RB overexpression increases the migratory capacity and reduces the hypoxia/reoxygenation-induced apoptosis of ADSCs. We identified STAT5 phosphorylation as the key mechanism underlying the effects of CSF2RB on promoting ADSC migration and inhibiting ADSC apoptosis. RNA sequencing followed by cause-effect analysis revealed that CSF2RB overexpression increases the expression of the ubiquitin ligase RNF4. Coimmunoprecipitation and coimmunostaining experiments showed that RNF4 binds to phosphorylated STAT5. RNF4 knockdown reduced STAT5 phosphorylation as well as the antiapoptotic and promigratory actions of ADSCs overexpressing CSF2RB. Conclusions: We demonstrate for the first time that CSF2RB overexpression optimizes the efficacy of intravenously delivered MSCs in the treatment of ischemic heart injury by increasing the response of the MSCs to a CSF2 gradient and CSF2RB-dependent STAT5/RNF4 activation.


Subject(s)
Cytokine Receptor Common beta Subunit , Heart Failure , Mesenchymal Stem Cell Transplantation , Myocardial Ischemia , Animals , Mice , Heart Failure/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Myocardial Ischemia/therapy , STAT5 Transcription Factor/metabolism , Stroke Volume , Ventricular Function, Left , Cytokine Receptor Common beta Subunit/metabolism
3.
Adv Sci (Weinh) ; 10(13): e2206439, 2023 05.
Article in English | MEDLINE | ID: mdl-36808838

ABSTRACT

Mesenchymal stromal cell (MSC) implantation is a promising option for liver repair, but their poor retention in the injured liver milieu critically blunts therapeutic effects. The aim is to clarify the mechanisms underlying massive MSC loss post-implantation and establish corresponding improvement strategies. MSC loss primarily occurs within the initial hours after implantation into the injured liver milieu or under reactive oxygen species (ROS) stress. Surprisingly, ferroptosis is identified as the culprit for rapid depletion. In ferroptosis- or ROS-provoking MSCs, branched-chain amino acid transaminase-1 (BCAT1) is dramatically decreased, and its downregulation renders MSC susceptible to ferroptosis via suppressing the transcription of glutathione peroxidase-4 (GPX4), a vital ferroptosis defensing enzyme. BCAT1 downregulation impedes GPX4 transcription via a rapid-responsive metabolism-epigenetics coordinating mechanism, involving α-ketoglutarate accumulation, histone 3 lysine 9 trimethylation loss, and early growth response protein-1 upregulation. Approaches to suppress ferroptosis (e.g., incorporating ferroptosis inhibitors in injection solvent and overexpressing BCAT1) significantly improve MSC retention and liver-protective effects post-implantation. This study provides the first evidence indicating that excessive MSC ferroptosis is the nonnegligible culprit for their rapid depletion and insufficient therapeutic efficacy after implantation into the injured liver milieu. Strategies suppressing MSC ferroptosis are conducive to optimizing MSC-based therapy.


Subject(s)
Ferroptosis , Mesenchymal Stem Cells , Ferroptosis/genetics , Reactive Oxygen Species/metabolism , Wound Healing , Liver/metabolism , Mesenchymal Stem Cells/metabolism
4.
J Environ Sci (China) ; 124: 901-914, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182193

ABSTRACT

Scale not only affects the taste and color of water, but also increases the risks of osteoporosis and cardiovascular diseases associated with drinking it. As a popular beverage, tea is rich many substances that have considerable potential for scale inhibition, including protein, tea polyphenols and organic acids. In this study, the effect of tea brewing on scale formation was explored. It was found that the proteins, catechins and organic acids in tea leaves could be released when the green tea was brewed in water with sufficient hardness and alkalinity. The tea-released protein was able to provide carboxyl groups to chelate with calcium ions (Ca2+), preventing the Ca2+ from reacting with the carbonate ions (CO32-). The B rings of catechins were another important structure in the complexation of Ca2+ and magnesium ions (Mg2+). The carboxyl and hydroxyl groups on the organic acids was able to form five-membered chelating rings with Ca2+ and Mg2+, resulting in a significant decrease in Ca2+ from 100.0 to 60.0 mg/L. Additionally, the hydrogen ions (H+) provided by the organic acids consumed and decreased the alkalinity of the water from 250.0 to 131.4 mg/L, leading to a remarkable reduction in pH from 8.93 to 7.73. It further prevented the bicarbonate (HCO3-) from producing CO32- when the water was heated. The reaction of the tea constituents with the hardness and alkalinity inhibited the formation of scale, leading to a significant decrease in turbidity from 10.6 to 1.4 NTU. Overall, this study provides information to help build towards an understanding of the scale inhibition properties of tea and the prospects of tea for anti-scaling in industrial applications.


Subject(s)
Calcium , Magnesium , Bicarbonates , Protons , Tea/chemistry , Water
5.
Adv Sci (Weinh) ; 9(24): e2200431, 2022 08.
Article in English | MEDLINE | ID: mdl-35780502

ABSTRACT

Bile acid metabolites have been increasingly recognized as pleiotropic signaling molecules that regulate cardiovascular functions, but their role in mesenchymal stromal cells (MSC)-based therapy has never been investigated. It is found that overexpression of farnesoid X receptor (FXR), a main receptor for bile acids, improves the retention and cardioprotection of adipose tissue-derived MSC (ADSC) administered by intramyocardial injection in mice with myocardial infarction (MI), which shows enhanced antiapoptotic, proangiogenic, and antifibrotic effects. RNA sequencing, LC-MS/MS, and loss-of-function studies reveal that FXR overexpression promotes ADSC paracrine angiogenesis via Angptl4. FXR overexpression improves ADSC survival in vivo but fails in vitro. By performing bile acid-targeted metabolomics using ischemic heart tissue, 19 bile acids are identified. Among them, cholic acid and deoxycholic acid significantly increase Angptl4 secretion from ADSC overexpressing FXR and further improve their proangiogenic capability. Moreover, ADSC overexpressing FXR shows significantly lower apoptosis by upregulating Nqo-1 expression only in the presence of FXR ligands. Retinoid X receptor α is identified as a coactivator of FXR. It is first demonstrated that there is a bile acid pool in the myocardial microenvironment. Targeting the bile acid-FXR axis may be a novel strategy for improving the curative effect of MSC-based therapy for MI.


Subject(s)
Heart Injuries , Ischemia , Mesenchymal Stem Cells , Receptors, Cytoplasmic and Nuclear , Animals , Bile Acids and Salts , Chromatography, Liquid , Heart Injuries/prevention & control , Ischemia/prevention & control , Mice , Receptors, Cytoplasmic and Nuclear/genetics , Retinoid X Receptor alpha , Tandem Mass Spectrometry
6.
Signal Transduct Target Ther ; 7(1): 171, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35654769

ABSTRACT

Mesenchymal stem cells (MSCs) delivered into the post-ischemic heart milieu have a low survival and retention rate, thus restricting the cardioreparative efficacy of MSC-based therapy. Chronic ischemia results in metabolic reprogramming in the heart, but little is known about how these metabolic changes influence implanted MSCs. Here, we found that excessive branched-chain amino acid (BCAA) accumulation, a metabolic signature seen in the post-ischemic heart, was disadvantageous to the retention and cardioprotection of intramyocardially injected MSCs. Discovery-driven experiments revealed that BCAA at pathological levels sensitized MSCs to stress-induced cell death and premature senescence via accelerating the loss of histone 3 lysine 9 trimethylation (H3K9me3). A novel mTORC1/DUX4/KDM4E axis was identified as the cause of BCAA-induced H3K9me3 loss and adverse phenotype acquisition. Enhancing BCAA catabolic capability in MSCs via genetic/pharmacological approaches greatly improved their adaptation to the high BCAA milieu and strengthened their cardioprotective efficacy. We conclude that aberrant BCAA accumulation is detrimental to implanted MSCs via a previously unknown metabolite-signaling-epigenetic mechanism, emphasizing that the metabolic changes of the post-ischemic heart crucially influence the fate of implanted MSCs and their therapeutic benefits.


Subject(s)
Graft vs Host Disease , Mesenchymal Stem Cells , Myocardial Infarction , Amino Acids, Branched-Chain , Heart , Humans , Myocardial Infarction/genetics , Myocardial Infarction/therapy
7.
Circ Res ; 130(10): 1490-1506, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35387487

ABSTRACT

RATIONALE: Long-term exercise provides reliable cardioprotection via mechanisms still incompletely understood. Although traditionally considered a thermogenic tissue, brown adipose tissue (BAT) communicates with remote organs (eg, the heart) through its endocrine function. BAT expands in response to exercise, but its involvement in exercise cardioprotection remains undefined. OBJECTIVE: This study investigated whether small extracellular vesicles (sEVs) secreted by BAT and their contained microRNAs (miRNAs) regulate cardiomyocyte survival and participate in exercise cardioprotection in the context of myocardial ischemia/reperfusion (MI/R) injury. METHODS AND RESULTS: Four weeks of exercise resulted in a significant BAT expansion in mice. Surgical BAT ablation before MI/R weakened the salutary effects of exercise. Adeno-associated virus 9 vectors carrying short hairpin RNA targeting Rab27a (a GTPase required for sEV secretion) or control viruses were injected in situ into the interscapular BAT. Exercise-mediated protection against MI/R injury was greatly attenuated in mice whose BAT sEV secretion was suppressed by Rab27a silencing. Intramyocardial injection of the BAT sEVs ameliorated MI/R injury, revealing the cardioprotective potential of BAT sEVs. Discovery-driven experiments identified miR-125b-5p, miR-128-3p, and miR-30d-5p (referred to as the BAT miRNAs) as essential BAT sEV components for mediating cardioprotection. BAT-specific inhibition of the BAT miRNAs prevented their upregulation in plasma sEVs and hearts of exercised mice and attenuated exercise cardioprotection. Mechanistically, the BAT miRNAs cooperatively suppressed the proapoptotic MAPK (mitogen-associated protein kinase) pathway by targeting a series of molecules (eg, Map3k5, Map2k7, and Map2k4) in the signaling cascade. Delivery of BAT sEVs into hearts or cardiomyocytes suppressed MI/R-related MAPK pathway activation, an effect that disappeared with the combined use of the BAT miRNA inhibitors. CONCLUSIONS: The sEVs secreted by BAT participate in exercise cardioprotection via delivering the cardioprotective miRNAs into the heart. These results provide novel insights into the mechanisms underlying the BAT-cardiomyocyte interaction and highlight BAT sEVs and their contained miRNAs as alternative candidates for exercise cardioprotection.


Subject(s)
Extracellular Vesicles , MicroRNAs , Myocardial Reperfusion Injury , Adipose Tissue, Brown/metabolism , Animals , Extracellular Vesicles/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , Physical Conditioning, Animal
8.
Exp Eye Res ; 218: 109018, 2022 05.
Article in English | MEDLINE | ID: mdl-35240197

ABSTRACT

The process of eye axis lengthening in myopic eyes is regulated by multiple mechanisms in the retina, and horizontal cells (HCs) are an essential interneuron in the visual regulatory system. Wherein intracellular Ca2+ plays an important role in the events involved in the regulatory role of HCs in the retinal neural network. It is unknown if intracellular Ca2+ regulation in HCs mediates changes in the retinal neural network during myopia progression. We describe here a novel calcium fluorescence indicator system that monitors HCs' intracellular Ca2+ levels during form-deprivation myopia (FDM) in mice. AAV injection of GCaMP6s, as a protein calcium sensor, into a Gja10-Cre mouse monitored the changes in Ca2+signaling in HC that accompany FDM progression in mice. An alternative Gja10-Cre/Ai96-GCaMP6s mouse model was created by cross mating Gja10-Cre with Ai96 mice. Immunofluorescence imaging and live imaging of the retinal cells verified the identity of these animal models. Changes in retinal horizontal cellular Ca2+ levels were resolved during FDM development. The numbers of GCaMP6s and the proportion of HCs were tracked based on profiling changes in GCaMP6s+calbindin+/calbindin+ coimmunostaining patterns. They significantly decreased more after either two days (P < 0.01) or two weeks (P < 0.001) in form deprived eyes than in the untreated fellow eyes. These decreases in their proportion reached significance only in the retinal central region rather than also in the retinal periphery. A novel approach employing a GCaMP6s mouse model was developed that may ultimately clarify if HCs mediate Ca2+ signals that contribute to controlling FDM progression in mice. The results indicate so far that FDM progression is associated with declines in HC Ca2+ signaling activity.


Subject(s)
Myopia , Retinal Horizontal Cells , Animals , Calbindins/metabolism , Calcium/metabolism , Disease Models, Animal , Mice , Myopia/metabolism , Retina/metabolism , Retinal Horizontal Cells/metabolism , Sensory Deprivation
9.
Adv Sci (Weinh) ; 9(7): e2103697, 2022 03.
Article in English | MEDLINE | ID: mdl-35038246

ABSTRACT

Few intravenously administered mesenchymal stromal cells (MSCs) engraft to the injured myocardium, thereby limiting their therapeutic efficacy for the treatment of ischemic heart injury. Here, it is found that irisin pretreatment increases the cardiac homing of adipose tissue-derived MSCs (ADSCs) administered by single and multiple intravenous injections to mice with MI/R by more than fivefold, which subsequently increases their antiapoptotic, proangiogenic, and antifibrotic effects in rats and mice that underwent MI/R. RNA sequencing, Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis, and loss-of-function studies identified CSF2RB as a cytokine receptor that facilitates the chemotaxis of irisin-treated ADSCs in the presence of CSF2, a chemokine that is significantly upregulated in the ischemic heart. Cardiac-specific CSF2 knockdown blocked the cardiac homing and cardioprotection abilities of intravenously injected irisin-treated ADSCs in mice subjected to MI/R. Moreover, irisin pretreatment reduced the apoptosis of hydrogen peroxide-induced ADSCs and increased the paracrine proangiogenic effect of ADSCs. ERK1/2-SOD2, and ERK1/2-ANGPTL4 are responsible for the antiapoptotic and paracrine angiogenic effects of irisin-treated ADSCs, respectively. Integrin αV/ß5 is identified as the irisin receptor in ADSCs. These results provide compelling evidence that irisin pretreatment can be an effective means to optimize intravenously delivered MSCs as therapy for ischemic heart injury.


Subject(s)
Heart Injuries , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction , Animals , Heart Injuries/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mice , Mice, Inbred C57BL , Myocardial Infarction/prevention & control , Rats
10.
Dalton Trans ; 50(43): 15602-15611, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34668504

ABSTRACT

A novel solid-state Z-scheme photocatalyst Ag3PO4/CSs/AgBr (carbon spheres, CSs) was rationally designed and successfully synthesized via a facile hydrothermal coprecipitation reaction. AgBr and Ag3PO4 were effectively loaded on the surface of the CSs and Ag3PO4/CSs/AgBr showed wide visible light absorption and superior photocatalytic performance. On the basis of ultraviolet photoelectron spectroscopy (UPS) analysis and scavenger reactions, a possible photocatalytic reaction mechanism for Ag3PO4/CSs/AgBr is proposed. The CSs act as a charge carrier transfer bridge for constructing the all-solid-state Z-scheme photocatalyst. The photogenerated electrons from Ag3PO4 and holes from AgBr congregate and recombine in the CSs phase, leaving photogenerated electrons with strong reduction abilities in the conduction band (CB) of AgBr and holes with strong oxidation abilities in the valence band (VB) of Ag3PO4. Some Ag+ ions accept electrons and turn to Ag nanoparticles (NPs), leading to the surface plasmon resonance of Ag NPs on AgBr. Therefore, the photocatalytic performance and stability were significantly improved.

11.
J Mol Cell Cardiol ; 160: 27-41, 2021 11.
Article in English | MEDLINE | ID: mdl-34224725

ABSTRACT

Irisin, the cleaved form of the fibronectin type III domain containing 5 (FNDC5) protein, is involved in metabolism and inflammation. Recent findings indicated that irisin participated in cardiovascular physiology and pathology. In this study, we investigated the effects of FNDC5/irisin on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. Downregulation of myocardial FNDC5/irisin protein expression and plasma irisin levels was observed in db/db mice compared to db/+ controls. Moreover, echocardiography revealed that db/db mice exhibited normal cardiac systolic function and impaired diastolic function. Adverse structural remodeling, including cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy were observed in the hearts of db/db mice. Sixteen-week-old db/db mice were intramyocardially injected with adenovirus encoding FNDC5 or treated with recombinant human irisin via a peritoneal implant osmotic pump for 4 weeks. Both overexpression of myocardial FNDC5 and exogenous irisin administration attenuated diastolic dysfunction and cardiac structural remodeling in db/db mice. Results from in vitro studies revealed that FNDC5/irisin protein expression was decreased in high glucose (HG)/high fat (HF)-treated cardiomyocytes. Increased levels of inducible nitric oxide synthase (iNOS), NADPH oxidase 2 (NOX2), 3-nitrotyrosine (3-NT), reactive oxygen species (ROS), and peroxynitrite (ONOO-) in HG/HF-treated H9C2 cells provided evidence of oxidative/nitrosative stress, which was alleviated by treatment with FNDC5/irisin. Moreover, the mitochondria membrane potential (ΔΨm) was decreased and cytochrome C was released from mitochondria with increased levels of cleaved caspase-3 in HG/HF-treated H9C2 cells, indicating the presence of mitochondria-dependent apoptosis, which was partially reversed by FNDC5/irisin treatment. Mechanistic studies showed that activation of integrin αVß5-AKT signaling and attenuation of oxidative/nitrosative stress were responsible for the cardioprotective effects of FNDC5/irisin. Therefore, FNDC5/irisin mediates cardioprotection in DCM by inhibiting myocardial apoptosis, myocardial fibrosis, and cardiac hypertrophy. These findings implicate that FNDC5/irisin as a potential therapeutic intervention for DCM, especially in type 2 diabetes mellitus (T2DM).


Subject(s)
Cardiotonic Agents/administration & dosage , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetic Cardiomyopathies/blood , Diabetic Cardiomyopathies/drug therapy , Fibronectins/administration & dosage , Nitrosative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Vitronectin/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Cardiomegaly/prevention & control , Cardiotonic Agents/blood , Disease Models, Animal , Fibronectins/blood , Fibronectins/genetics , Male , Mice , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Recombinant Proteins/administration & dosage , Treatment Outcome , Ventricular Remodeling/drug effects
12.
BMC Plant Biol ; 21(1): 209, 2021 May 08.
Article in English | MEDLINE | ID: mdl-33964877

ABSTRACT

BACKGROUND: Bagging is one of the most important techniques for producting high-quality fruits. In the actual of cultivating, we found a new kind of browning in peel of apple fruit that occurs before harvest and worsen during storage period. There are many studies on metabonomic analysis of browning about storage fruits, but few studies on the mechanism of browning before harvest. RESULTS: In this study, five-year-old trees of 'Rui Xue' (CNA20151469.1) were used as materials. Bagging fruits without browning (BFW) and bagging fruits with browning (BFB) were set as the experimental groups, non-bagging fruits (NBF) were set as control. After partial least squares discriminant analysis (PLS-DA), 50 kinds of metabolites were important with predictive VIP > 1 and p-value < 0.05. The most important differential metabolites include flavonoids and lipids molecules, 11 flavonoids and 6 lipids molecules were significantly decreased in the BFW compared with NBF. After browning, 11 flavonoids and 7 lipids were further decreased in BFB compared with BFW. Meanwhile, the significantly enriched metabolic pathways include galactose metabolism, ABC membrane transporter protein, flavonoid biosynthesis and linoleic acid metabolism pathways et al. Physiological indicators show that, compared with NBF, the content of malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide anion (O2-) in peel of BFW and BFB were significantly increased, and the difference of BFB was more significant. Meanwhile, the antioxidant enzyme activities of BFW and BFB were inhibited, which accelerated the destruction of cell structure. In addition, the metabolome and physiological data showed that the significantly decrease of flavonoid was positively correlated with peel browning. So, we analyzed the expression of flavonoid related genes and found that, compared with NBF, the flavonoid synthesis genes MdLAR and MdANR were significantly up-regulated in BFW and BFB, but, the downstream flavonoids-related polymeric genes MdLAC7 and MdLAC14 were also significantly expressed. CONCLUSIONS: Our findings demonstrated that the microenvironment of fruit was changed by bagging, the destruction of cell structure, the decrease of flavonoids and the increase of triterpenoids were the main reasons for the browning of peel.


Subject(s)
Fruit/growth & development , Fruit/genetics , Fruit/metabolism , Malus/growth & development , Malus/genetics , Malus/metabolism , China , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Genetic Variation , Genotype , Maillard Reaction , Metabolome
13.
Theranostics ; 10(12): 5623-5640, 2020.
Article in English | MEDLINE | ID: mdl-32373236

ABSTRACT

Rationale: Myocardial vulnerability to ischemia/reperfusion (I/R) injury is strictly regulated by energy substrate metabolism. Branched chain amino acids (BCAA), consisting of valine, leucine and isoleucine, are a group of essential amino acids that are highly oxidized in the heart. Elevated levels of BCAA have been implicated in the development of cardiovascular diseases; however, the role of BCAA in I/R process is not fully understood. The present study aims to determine how BCAA influence myocardial energy substrate metabolism and to further clarify the pathophysiological significance during cardiac I/R injury. Methods: Parameters of glucose and fatty acid metabolism were measured by seahorse metabolic flux analyzer in adult mouse cardiac myocytes with or without BCAA incubation. Chronic accumulation of BCAA was induced in mice receiving oral BCAA administration. A genetic mouse model with defective BCAA catabolism was also utilized. Mice were subjected to MI/R and the injury was assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. Results: We confirmed that chronic accumulation of BCAA enhanced glycolysis and fatty acid oxidation (FAO) but suppressed glucose oxidation in adult mouse ventricular cardiomyocytes. Oral gavage of BCAA enhanced FAO in cardiac tissues, exacerbated lipid peroxidation toxicity and worsened myocardial vulnerability to I/R injury. Etomoxir, a specific inhibitor of FAO, rescued the deleterious effects of BCAA on I/R injury. Mechanistically, valine, leucine and their corresponding branched chain α-keto acid (BCKA) derivatives, but not isoleucine and its BCKA derivative, transcriptionally upregulated peroxisome proliferation-activated receptor alpha (PPAR-α). BCAA/BCKA induced PPAR-α upregulation through the general control nonderepresible-2 (GCN2)/ activating transcription factor-6 (ATF6) pathway. Finally, in a genetic mouse model with BCAA catabolic defects, chronic accumulation of BCAA increased FAO in myocardial tissues and sensitized the heart to I/R injury, which could be reversed by adenovirus-mediated PPAR-α silencing. Conclusions: We identify BCAA as an important nutrition regulator of myocardial fatty acid metabolism through transcriptional upregulation of PPAR-α. Chronic accumulation of BCAA, caused by either dietary or genetic factors, renders the heart vulnerable to I/R injury via exacerbating lipid peroxidation toxicity. These data support the notion that BCAA lowering methods might be potentially effective cardioprotective strategies, especially among patients with diseases characterized by elevated levels of BCAA, such as obesity and diabetes.


Subject(s)
Activating Transcription Factor 6/metabolism , Amino Acids, Branched-Chain/toxicity , Fatty Acids/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , PPAR alpha/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Energy Metabolism , Glucose/metabolism , Mice , Mice, Knockout , Myocardial Reperfusion Injury/chemically induced , Myocardial Reperfusion Injury/metabolism , Oxidation-Reduction
14.
Int J Mol Med ; 45(5): 1477-1487, 2020 May.
Article in English | MEDLINE | ID: mdl-32323750

ABSTRACT

Sepsis­induced cardiomyopathy (SIC) is a complication of severe sepsis and septic shock characterized by an invertible myocardial depression. This study sought to explore the potential effects and mechanism of luteolin, a flavonoid polyphenolic compound, in lipopolysaccharide (LPS)­induced myocardial injury. Experimental mice were randomly allocated into 3 groups (25 mice in each group): The control group (NC), the LPS group (LPS) and the LPS + luteolin group (LPS + Lut). Before the SIC model was induced, luteolin was dissolved in DMSO and injected intraperitoneally for 10 days into LPS + Lut group mice. NC group and LPS group mice received an equal volume of DMSO for 10 days. On day 11, the animal model of sepsis­induced cardiac dysfunction was induced by intraperitoneal injection of LPS. A total of 12 h after LPS injection, measurements and comparisons were made among the groups. Luteolin administration improved cardiac function, attenuated the inflammatory response, alleviated mitochondrial injury, decreased oxidative stress, inhibited cardiac apoptosis and enhanced autophagy. In addition, luteolin significantly decreased the phosphorylation of AMP­activated protein kinase (AMPK) in septic heart tissue. The protective effect of luteolin was abolished by 3­methyladenine (an autophagy inhibitor) and dorsomorphin (compound C, an AMPK inhibitor), as evidenced by decreased autophagic activity, destabilized mitochondrial membrane potential and increased apoptosis in LPS­treated cardiomyocytes, but was mimicked by 5­aminoimidazole­4­carboxamide ribonucleotide (an AMPK activator), suggesting that luteolin attenuates LPS­induced myocardial injury by increasing autophagy through AMPK activation. Luteolin may be a promising therapeutic agent for treating SIC.


Subject(s)
Autophagy/drug effects , Cardiomyopathies/drug therapy , Heart Injuries/drug therapy , Luteolin/pharmacology , Myocytes, Cardiac/drug effects , Sepsis/drug therapy , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Cardiomyopathies/metabolism , Heart Injuries/metabolism , Lipopolysaccharides/pharmacology , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Phosphorylation/drug effects , Sepsis/metabolism
15.
Diabetes ; 69(6): 1164-1177, 2020 06.
Article in English | MEDLINE | ID: mdl-32184272

ABSTRACT

Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including type 2 diabetes and nonalcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.


Subject(s)
Amino Acids, Branched-Chain/pharmacology , Diet, High-Fat/adverse effects , Lipid Metabolism Disorders/chemically induced , Liver/drug effects , Obesity/complications , Proto-Oncogene Proteins c-akt/metabolism , Amino Acids, Branched-Chain/administration & dosage , Animals , Cells, Cultured , Dietary Fats/administration & dosage , Dietary Fats/adverse effects , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Expression Regulation/drug effects , Hepatocytes/metabolism , Humans , Kidney/metabolism , Lipid Metabolism/drug effects , Liver/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/genetics , Random Allocation , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
16.
J Am Heart Assoc ; 9(2): e013784, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31955638

ABSTRACT

Background Poor engraftment of intramyocardial stem cells limits their therapeutic efficiency against myocardial infarction (MI)-induced cardiac injury. Transglutaminase cross-linked Gelatin (Col-Tgel) is a tailorable collagen-based hydrogel that is becoming an excellent biomaterial scaffold for cellular delivery in vivo. Here, we tested the hypothesis that Col-Tgel increases retention of intramyocardially-injected stem cells, and thereby reduces post-MI cardiac injury. Methods and Results Adipose-derived mesenchymal stem cells (ADSCs) were co-cultured with Col-Tgel in a 3-dimensional system in vitro, and Col-Tgel encapsulated ADSCs were observed using scanning electron microscopy and confocal microscopy. Vitality, proliferation, and migration of co-cultured ADSCs were evaluated. In addition, mice were subjected to MI and were intramyocardially injected with ADSCs, Col-Tgel, or a combination thereof. ADSCs engraftment, survival, cardiac function, and fibrosis were assessed. In vitro MTT and Cell Counting Kit-8 assays demonstrated that ADSCs survive and proliferate up to 4 weeks in the Col-Tgel. In addition, MTT and transwell assays showed that ADSCs migrate outside the edge of the Col-Tgel sphere. Furthermore, when compared with ADSCs alone, Col-Tgel-encapsulated ADSCs significantly enhanced the long-term retention and cardioprotective effect of ADSCs against MI-induced cardiac injury. Conclusions In the current study, we successfully established a 3-dimensional co-culture system using ADSCs and Col-Tgel. The Col-Tgel creates a suitable microenvironment for long-term retention of ADSCs in an ischemic area, and thereby enhances their cardioprotective effects. Taken together, this study may provide an alternative biomaterial for stem cell-based therapy to treat ischemic heart diseases.


Subject(s)
Collagen/chemistry , Cross-Linking Reagents/chemistry , Gelatin/chemistry , Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction/surgery , Myocardium/pathology , Transglutaminases/chemistry , Animals , Cell Survival , Cells, Cultured , Cellular Microenvironment , Disease Models, Animal , Fibrosis , Graft Survival , Hydrogels , Male , Mice, Inbred C57BL , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Rats, Sprague-Dawley , Recovery of Function , Time Factors , Ventricular Function, Left
17.
Article in English | MEDLINE | ID: mdl-31835871

ABSTRACT

Gobeil's model is one of the most widely used models to identify lead (Pb) pollution sources in the environment. It is based on a set of equations involving Pb isotope fractions. Although a well-established numerical method, Gobeil's model is often unable to provide an accurate estimation of each pollution sources' contribution. This paper comprehensively examines the drawbacks of Gobeil's model based on a numerical analysis and proposes a revised numerical method that provides a more accurate estimation of Pb pollution sources. Briefly, the mathematical inaccuracy of Gobeil's model mainly lies in the misinterpretation of "lead fingerprint ratio balance." To address this problem, the new analytic model relies on the mass balance of total lead in the contaminated sites, and uses a set of linear equations to obtain the contribution of each pollution source based on the lead fingerprint. A subsequent case study from an industrial park in Guanzhong area of Shaanxi Province in China shows that we can calculate the lead contribution rates accurately with the new model.


Subject(s)
Environmental Pollution/analysis , Lead/analysis , Models, Theoretical , Soil Pollutants/analysis , China , Environmental Monitoring , Isotopes/analysis , Soil
18.
World J Microbiol Biotechnol ; 35(7): 113, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31289918

ABSTRACT

Camellia taliensis (W. W. Smith) Melchior is a wild tea plant endemic from the west and southwest of Yunnan province of China to the north of Myanmar and is used commonly to produce tea by the local people of its growing areas. Its chemical constituents are closely related to those of C. sinensis var. assamica, a widely cultivated tea plant. In this study, the α diversity and phylogeny of endophytic fungi in the branches of C. taliensis were explored for the first time. A total of 160 fungal strains were obtained and grouped into 42 species from 29 genera, which were identified based on rDNA internal transcribed spacer sequence analysis. Diversity analysis showed that the endophytic fungal community of the branches of C. taliensis had high species richness S (42), Margalef index D' (8.0785), Shannon-Wiener index H' (2.8494), Simpson diversity index DS (0.8891), PIE index (0.8947) and evenness Pielou index J (0.7623) but a low dominant index λ (0.1109). By contrast, that in the branches of C. taliensis had abundant species and high species evenness. Diaporthe tectonigena, Acrocalymma sp. and Colletotrichum magnisporum were the dominant endophytic fungi. The phylogenetic tree was established by maximum parsimony analysis, and the 11 orders observed for endophytic fungi belonging to Ascomycota and Basidiomycota were grouped into 4 classes.


Subject(s)
Camellia/microbiology , Endophytes/classification , Endophytes/isolation & purification , Fungi/classification , Fungi/isolation & purification , Phylogeny , Tea , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/isolation & purification , Biodiversity , China , Cluster Analysis , DNA, Ribosomal/genetics , Endophytes/genetics , Fungi/genetics , Myanmar , Sequence Analysis
19.
Biochem Biophys Res Commun ; 516(4): 1103-1109, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31280865

ABSTRACT

Atherosclerosis is characterized by the accumulation of excess cholesterol in plaques. Reverse cholesterol transport (RCT) plays a key role in the removal of cholesterol. In the present study, we examined the effect of thioredoxin-1 (Trx-1) on RCT and explored the underlying mechanism. We found that Trx-1 promoted RCT in vivo, as did T0901317, a known liver X receptor (LXR) ligand. T0901317 also inhibited the development of atherosclerotic plaques but promoted liver steatosis. Furthermore, Trx-1 promoted macrophage cholesterol efflux to apoAI in vitro. Mechanistically, Trx-1 promoted nuclear translocation of LXRα and induced the expression of ATP-binding cassette transporter A1 (ABCA1). Apolipoprotein E knockout (apoE-/-) mice fed an atherogenic diet were daily injected intraperitoneally with saline or Trx-1 (0.33 mg/kg). Trx-1 treatment significantly inhibited the development of atherosclerosis and induced the expression of ABCA1 in macrophages retrieved from apoE-/- mice. Moreover, the liver steatosis was attenuated by Trx-1. Overall, we demonstrated that Trx-1 promotes RCT by upregulating ABCA1 expression through induction of nuclear translocation of LXRα, and protects liver from steatosis.


Subject(s)
Cholesterol/metabolism , Fatty Liver/metabolism , Liver/metabolism , Macrophages/metabolism , Thioredoxins/metabolism , ATP Binding Cassette Transporter 1/metabolism , Animals , Biological Transport , Fatty Liver/pathology , Liver/pathology , Liver X Receptors/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL
20.
RSC Adv ; 9(44): 25638-25646, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-35530062

ABSTRACT

The solar-to-fuel conversion using a photocatalyst is an ideal method to solve the energy crisis and global warming. In this contribution, photocatalytic H2 production and organic pollutant removal using g-C3N4/CuS composite was demonstrated. Well dispersed CuS nanoparticles (NPs) with a size of about 10 nm were successfully grown on the surface of g-C3N4 nanosheet via a facile hydrothermal method. The as-prepared g-C3N4/CuS nanocomposite at an optimized loading exhibited a much higher visible light photoactivity, giving up to 2.7 times and 1.5 times enhancements in comparison to pure g-C3N4 for photocatalytic H2 production and methylene orange (MO) degradation, respectively. These enhanced photocatalytic activities are attributed to the interfacial transfer of photogenerated electrons and holes between g-C3N4 and CuS, which leads to effective charge separation on both parts. That is, under the visible light irradiation, electrons in the valence band (VB) of g-C3N4 can directly transfer to the CuS NPs, which can act as an electron sink and co-catalyst to promote the separation and transfer of photo-generated electrons, thus significantly improving the photocatalytic efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...