Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Rice (N Y) ; 16(1): 58, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087150

ABSTRACT

BACKGROUND: The leaf epidermis plays an important role in the transmission of light and the regulation of water and gas exchange, which influences the photosynthesis of mesophyll cells. Small papillae (SP) are one of the important structural elements of the leaf epidermis. The mechanism of the effect that small papillae have on rice leaf photosynthetic performance remains unclear. RESULTS: In this study, a small papilla deficient 25 (spd25) mutant was isolated from japonica rice Longjin1. Small papillae were absent on the adaxial and abaxial leaf surfaces of the spd25 mutant and the silicon and cuticular wax content in the spd25 mutant leaves decreased. Map-based cloning and functional analysis revealed that SPD25, encoding a guanine nucleotide exchange factor for Rop, is a novel allele of OsRopGEF10. The spd25 mutant showed an increased water loss rate and reduced relative water content. The lower stomatal conductance in the spd25 mutant prevented water loss but decreased the intercellular CO2 concentration and net assimilation rate. The fluorescence parameters showed that the inhibited CO2 assimilation reaction feedback regulated the photochemical electron-transfer reaction, but the performance of Photosystem II was stable. Further analysis indicated that the excess light energy absorbed by the spd25 mutant was dissipated in the form of non-photochemical quenching to avoid photodamage through the optical properties of small papillae. CONCLUSIONS: SPD25 regulates the development of small papillae on the surface of rice leaves, which play an important role in balancing photosynthetic gas exchange and water loss. This study deepens our understanding of the physiological mechanisms by which small papillae affect photosynthetic performance.

2.
Int J Mol Sci ; 24(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36982870

ABSTRACT

Chloroplasts are essential sites for plant photosynthesis, and the biogenesis of the photosynthetic complexes involves the interaction of nuclear genes and chloroplast genes. In this study, we identified a rice pale green leaf mutant, crs2. The crs2 mutant showed different degrees of low chlorophyll phenotypes at different growth stages, especially at the seedling stage. Fine mapping and DNA sequencing of crs2 revealed a single nucleotide substitution (G4120A) in the eighth exons of CRS2, causing a G-to-R mutation of the 229th amino acid of CRS2 (G229R). The results of complementation experiments confirmed that this single-base mutation in crs2 is responsible for the phenotype of the crs2 mutant. CRS2 encodes a chloroplast RNA splicing 2 protein localized in the chloroplast. Western blot results revealed an abnormality in the abundance of the photosynthesis-related protein in crs2. However, the mutation of CRS2 leads to the enhancement of antioxidant enzyme activity, which could reduce ROS levels. Meanwhile, with the release of Rubisco activity, the photosynthetic performance of crs2 was improved. In summary, the G229R mutation in CRS2 causes chloroplast protein abnormalities and affects photosystem performance in rice; the above findings facilitate the elucidation of the physiological mechanism of chloroplast proteins affecting photosynthesis.


Subject(s)
Oryza , Oryza/metabolism , Nucleotides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Photosynthesis/genetics , Chloroplasts/metabolism , Chlorophyll/metabolism , Phenotype , Mutation , Gene Expression Regulation, Plant , Plant Leaves/metabolism
3.
Planta ; 257(4): 77, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894728

ABSTRACT

MAIN CONCLUSION: GRA117 is crucial in the process of carbon assimilation in rice as it regulates the development of chloroplasts, which in turn facilitates the Calvin-Benson cycle. Carbon assimilation is a critical process for plant growth, and despite numerous relevant studies, there are still unknown constraints. In this study, we isolated a rice mutant, gra117, which exhibited seedling albinism, delayed chloroplast development, decreased chlorophyll content, reduced yield, and seedling stress susceptibility, as compared to WT. Our further investigations revealed that gra117 had a significantly lower net photosynthetic carbon assimilation rate, as well as reduced levels of Rubisco enzyme activity, RUBP, PGA, carbohydrate, protein content, and dry matter accumulation. These findings provide evidence for decreased carbon assimilation in gra117. By mapping cloning, we discovered a 665 bp insertion in the GRA117 promoter region that decreases GRA117 transcriptional activity and causes the gra117 phenotype. GRA117 encodes PfkB-type fructokinase-like 2, which is subcellularly localized in chloroplasts and is widely expressed in various rice tissues, particularly at high levels in leaf tissues. GRA117 transcription is regulated by the core region 1029 bp before the start codon. Our quantitative RT-PCR and Western blot assays showed that GRA117 promotes the expression and translation of photosynthetic genes. RNA-Seq analysis revealed that GRA117 plays a significant role in photosynthetic carbon fixation, carbon metabolism, and chloroplast ribosome-related pathways. Our study supports that GRA117 promotes the Calvin-Benson cycle by regulating chloroplast development, ultimately leading to enhanced carbon assimilation in rice.


Subject(s)
Oryza , Oryza/metabolism , Carbon/metabolism , Photosynthesis/genetics , Chloroplasts/metabolism , Promoter Regions, Genetic/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
4.
Plant Cell Rep ; 42(2): 449-460, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36585972

ABSTRACT

KEY MESSAGE: WSL214 plays an important role in promoting cellular ROS homeostasis by enhancing catalase activity and reducing photosynthetic ROS production. ROS are the important regulator of cellular homeostasis, and balancing ROS production and clearance contributes to cellular activity. Although many genes associated with ROS have been cloned, the mechanism of this balance is not fully understood. In this study, we obtained the rice mutant wsl214 that arose from a natural mutation. Compared to WT, wsl214 exhibited white-striped leaves, defective chloroplast development, reduced net photosynthetic rate, and overexcitation of photosynthetically active reaction centers. In addition, the ROS accumulation level was significantly elevated, and the ROS scavenging enzyme activity was significantly decreased in wsl214 leaf tissue. As a result of elevated ROS levels, wsl214 leaf cells underwent DNA damage and programmed cell death. However, wsl214 defense response to exogenous pathogens was also enhanced by high ROS levels. Based on the mapping cloning, we discovered that WSL214 had a single base mutation (C to T) in the third exon, resulting in decreased expression of wsl214. The WSL214 encodes an HD domain phosphohydrolase and is widely expressed in various tissues of rice, especially at the highest level in leaf tissue. Further research showed that WSL214 promoted the homeostasis of rice leaf cellular ROS in two ways. First, WSL214 increased the expression of the catalase gene OsCATC, making the intracellular ROS scavenging enzyme more active. Second, WSL214 promoted chloroplast development, kept photosynthesis working properly, and reduced ROS produced by photosynthesis. In conclusion, our report emphasizes that WSL214 is a key part of balancing ROS levels in cells.


Subject(s)
Oryza , Oryza/metabolism , Reactive Oxygen Species/metabolism , Catalase/genetics , Catalase/metabolism , Phenotype , Photosynthesis/genetics , Mutation , Chloroplasts/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
5.
Sci Rep ; 12(1): 5969, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35396526

ABSTRACT

Quality-related traits are some of the most important traits in rice, and screening and breeding rice lines with excellent quality are common ways for breeders to improve the quality of rice. In this study, we used 151 recombinant inbred lines (RILs) obtained by crossing the northern cultivated japonica rice variety ShenNong265 (SN265) with the southern indica rice variety LuHui99 (LH99) and simplified 18 common rice quality-related traits into 8 independent principal components (PCs) by principal component analysis (PCA). These PCs included peak and hot paste viscosity, chalky grain percentage and chalkiness degree, brown and milled rice recovery, width length rate, cooked taste score, head rice recovery, milled rice width, and cooked comprehensive score factors. Based on the weight ratio of each PC score, the RILs were classified into five types from excellent to poor, and five excellent lines were identified. Compared with SN265, these 5 lines showed better performance regarding the chalky grain percentage and chalkiness degree factor. Moreover, we performed QTL localization on the RIL population and identified 94 QTLs for quality-related traits that formed 6 QTL clusters. In future research, by combining these QTL mapping results, we will be using backcrossing to aggregate excellent traits and achieve quality improvement of SN265.


Subject(s)
Oryza , Chromosome Mapping , Edible Grain/genetics , Oryza/genetics , Plant Breeding , Principal Component Analysis , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...