Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Chin Med ; 52(1): 57-88, 2024.
Article in English | MEDLINE | ID: mdl-38353634

ABSTRACT

Chronic respiratory diseases are long-term conditions affecting the airways and other lung components that are characterized by a high prevalence, disability rate, and mortality rate. Further optimization of their treatment is required. Natural products, primarily extracted from organisms, possess specific molecular and structural formulas as well as distinct chemical and physical properties. These characteristics grant them the advantages of safety, gentleness, accessibility, and minimal side effects. The numerous advances in the use of natural products for treating chronic respiratory diseases have provided a steady source of motivation for new drug research and development. In this paper, we introduced the pathogenesis of chronic respiratory diseases and natural products. Furthermore, we classified natural products according to their mechanism for treating chronic respiratory diseases and describe the ways in which these products can alleviate the pathological symptoms. Simultaneously, we elaborate on the signal transduction pathways and biological impacts of natural products' targeting. Additionally, we present future prospects for natural products, considering their combination treatment approaches and administration methods. The significance of this review extends to both the research on preventing and treating chronic respiratory diseases, as well as the advancement of novel drug development in this field.


Subject(s)
Biological Products , Respiratory Tract Diseases , Humans , Biological Products/therapeutic use , Biological Products/chemistry , Drug Development , Respiratory Tract Diseases/drug therapy
2.
Trends Mol Med ; 29(11): 926-938, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37704492

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is responsible for high disability rates, high death rates, and significant cost to health systems. Growing evidence in recent decades shows significant biophysical microenvironment changes in COPD, impacting lung tissues, cells, and treatment response. Furthermore, such biophysical changes have shown great potential as novel targets for improved therapeutic strategy of COPD, where both pharmacological and non-pharmacological therapies focusing on repairing the biophysical microenvironment of the lung have emerged. We present the first comprehensive review of four distinct biophysical hallmarks [i.e., extracellular matrix (ECM) microarchitecture, stiffness, fluid shear stress, and mechanical stretch] in COPD, the possible involvement of pathological changes, possible effects, and correlated in vitro models and sum up the emerging COPD treatments targeting these biophysical hallmarks.

3.
Front Pharmacol ; 14: 1139137, 2023.
Article in English | MEDLINE | ID: mdl-36969832

ABSTRACT

Aims: Our study focused on whether macrophages ferroptosis is associated with the pathogenesis of chronic obstructive pulmonary disease (COPD) or not. Main methods: We first identified macrophage module genes by weighted gene co-expression network analysis (WGCNA) in RNA sequencing (RNA-seq) date from COPD, and then identified macrophage marker genes by comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data from COPD macrophages. There were 126 macrophage marker genes identified, and functional enrichment analyses indicated that ferroptosis pathway genes were significantly enriched. Secondly, we identified eight macrophage ferroptosis related genes and based on these eight genes, we performed co-expression analysis and drug prediction. Thirdly, two biomarkers (SOCS1 and HSPB1) were screened by the least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine-recursive feature elimination (SVM-RFE) and established an artificial neural network (ANN) for diagnosis. Subsequently, the biomarkers were validated in the dataset and validation set. These two biomarkers were then subjected to single gene-gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) analysis, and the ceRNA network was constructed. Finally, we carried out molecular validation with COPD models in vitro for cell counting kit-8 (CCK8) experiments, Western blot and quantitative real-time PCR (qRT-PCR) analysis and transmission electron microscopy (TEM). Key findings: This study revealed the vital role of macrophage ferroptosis in COPD, and novel biomarkers (SOCS1 and HSPB1) may be involved in the pathogenesis of COPD by regulating macrophage ferroptosis. Significance: Taken together, our results suggest that targeting SOCS1 and HSPB1 could treat COPD by inhibiting macrophage ferroptosis.

4.
Front Bioeng Biotechnol ; 10: 1042030, 2022.
Article in English | MEDLINE | ID: mdl-36394025

ABSTRACT

Cardiac fibrosis is a common pathology in cardiovascular diseases which are reported as the leading cause of death globally. In recent decades, accumulating evidence has shown that the biomechanical traits of fibrosis play important roles in cardiac fibrosis initiation, progression and treatment. In this review, we summarize the four main distinct biomechanical traits (i.e., stretch, fluid shear stress, ECM microarchitecture, and ECM stiffness) and categorize them into two different types (i.e., static and dynamic), mainly consulting the unique characteristic of the heart. Moreover, we also provide a comprehensive overview of the effect of different biomechanical traits on cardiac fibrosis, their transduction mechanisms, and in-vitro engineered models targeting biomechanical traits that will aid the identification and prediction of mechano-based therapeutic targets to ameliorate cardiac fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...