Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Phytother Res ; 36(10): 3932-3948, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35801985

ABSTRACT

Posttraumatic stress disorder (PTSD) is one of the most common psychiatric diseases, which is characterized by the typical symptoms such as re-experience, avoidance, and hyperarousal. However, there are few drugs for PTSD treatment. In this study, conditioned fear and single-prolonged stress were employed to establish PTSD mouse model, and we investigated the effects of Tanshinone IIA (TanIIA), a natural product isolated from traditional Chinese herbal Salvia miltiorrhiza, as well as the underlying mechanisms in mice. The results showed that the double stress exposure induced obvious PTSD-like symptoms, and TanIIA administration significantly decreased freezing time in contextual fear test and relieved anxiety-like behavior in open field and elevated plus maze tests. Moreover, TanIIA increased the spine density and upregulated synaptic plasticity-related proteins as well as activated CREB/BDNF/TrkB signaling pathway in the hippocampus. Blockage of CREB remarkably abolished the effects of TanIIA in PTSD model mice and reversed the upregulations of p-CREB, BDNF, TrkB, and synaptic plasticity-related protein induced by TanIIA. The molecular docking simulation indicated that TanIIA could interact with the CREB-binding protein. These findings indicate that TanIIA ameliorates PTSD-like behaviors in mice by activating the CREB/BDNF/TrkB pathway, which provides a basis for PTSD treatment.


Subject(s)
Biological Products , Brain-Derived Neurotrophic Factor , Abietanes , Animals , Anxiety/drug therapy , Biological Products/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , CREB-Binding Protein/metabolism , CREB-Binding Protein/pharmacology , Fear , Hippocampus/metabolism , Mice , Molecular Docking Simulation , Signal Transduction
2.
Front Endocrinol (Lausanne) ; 13: 887238, 2022.
Article in English | MEDLINE | ID: mdl-35712239

ABSTRACT

Background: Chronic pain is defined as pain that persists typically for a period of over six months. Chronic pain is often accompanied by an anxiety disorder, and these two tend to exacerbate each other. This can make the treatment of these conditions more difficult. Glucose-dependent insulinotropic polypeptide (GIP) is a member of the incretin hormone family and plays a critical role in glucose metabolism. Previous research has demonstrated the multiple roles of GIP in both physiological and pathological processes. In the central nervous system (CNS), studies of GIP are mainly focused on neurodegenerative diseases; hence, little is known about the functions of GIP in chronic pain and pain-related anxiety disorders. Methods: The chronic inflammatory pain model was established by hind paw injection with complete Freund's adjuvant (CFA) in C57BL/6 mice. GIP receptor (GIPR) agonist (D-Ala2-GIP) and antagonist (Pro3-GIP) were given by intraperitoneal injection or anterior cingulate cortex (ACC) local microinjection. Von Frey filaments and radiant heat were employed to assess the mechanical and thermal hypersensitivity. Anxiety-like behaviors were detected by open field and elevated plus maze tests. The underlying mechanisms in the peripheral nervous system and CNS were explored by GIPR shRNA knockdown in the ACC, enzyme-linked immunosorbent assay, western blot analysis, whole-cell patch-clamp recording, immunofluorescence staining and quantitative real-time PCR. Results: In the present study, we found that hind paw injection with CFA induced pain sensitization and anxiety-like behaviors in mice. The expression of GIPR in the ACC was significantly higher in CFA-injected mice. D-Ala2-GIP administration by intraperitoneal or ACC local microinjection produced analgesic and anxiolytic effects; these were blocked by Pro3-GIP and GIPR shRNA knockdown in the ACC. Activation of GIPR inhibited neuroinflammation and activation of microglia, reversed the upregulation of NMDA and AMPA receptors, and suppressed the enhancement of excitatory neurotransmission in the ACC of model mice. Conclusions: GIPR activation was found to produce analgesic and anxiolytic effects, which were partially due to attenuation of neuroinflammation and inhibition of excitatory transmission in the ACC. GIPR may be a suitable target for treatment of chronic inflammatory pain and pain-related anxiety.


Subject(s)
Chronic Pain , Receptors, Gastrointestinal Hormone , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Freund's Adjuvant , Gastric Inhibitory Polypeptide/physiology , Gyrus Cinguli/metabolism , Mice , Mice, Inbred C57BL , RNA, Small Interfering , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Gastrointestinal Hormone/metabolism
3.
Brain Res Bull ; 177: 73-80, 2021 12.
Article in English | MEDLINE | ID: mdl-34555432

ABSTRACT

Our previous study showed that neuronal apoptosis was significantly increased upon treatment of conditioned medium (CM) from necroptotic astrocytes (NAS), leaving the underlying mechanism unclear. Considering the nutritive and supportive roles of astrocytes, we first examined the neurotrophic phenotype of necroptotic astrocytes with focus on glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), two important neurotrophic factors, and it was unexpectedly found that the expression of GDNF and BDNF were up-regulated in necroptotic astrocytes in vitro. A question was raised as to whether the functional secreted forms of neurotrophic factors were increased. Considering that extracellular vesicles (EVs) were carriers of secreted substances and their roles in cellular interaction, we isolated EVs from astrocytes and found EVs from normal and necroptotic astrocytes (EVs-NAS) had characteristics of exosomes. We then examined GDNF and BDNF in EVs-NAS, and BDNF was interestingly found as an immature form of pro-BDNF. The expression of pro-BDNF was found to be increased in EVs-NAS, and EVs-NAS had a negative effect on neuronal survival. To verify that whether pro-BDNF was involved in the detrimental effect of EVs-NAS, anti-pro-BDNF antibody was applied, and we found that neuronal apoptosis-induced by EVs-NAS could be significantly attenuated by blocking pro-BDNF, which suggested that necroptotic astrocytes induced neuronal apoptosis partially through EVs-derived pro-BDNF. The data expand our understanding in neurotrophic phenotype of necroptotic astrocytes, and may provide us new strategies targeting on EVs-NAS in treatment of neurological diseases.


Subject(s)
Brain-Derived Neurotrophic Factor , Extracellular Vesicles , Apoptosis , Astrocytes/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Extracellular Vesicles/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Protein Precursors
4.
Cancer Manag Res ; 12: 3099-3106, 2020.
Article in English | MEDLINE | ID: mdl-32440208

ABSTRACT

OBJECTIVE: To investigate the clinical value of plasma cell-free DNA (cfDNA) as a potential biomarker for advanced gastric cancer (GC). PATIENTS AND METHODS: One hundred and six cases of advanced gastric cancer patients receiving chemotherapy were selected as study objects. Another 40 healthy volunteers were included as control groups. Plasma cfDNA concentration was detected by (SuperbDNATM) hybridization. Changes in cfDNA concentration during chemotherapy in patients with gastric cancer whose efficacy was assessed as partial response (PR), stable disease (SD) and disease progression (PD) were analyzed respectively. The relationship between the level of cfDNA and the efficacy of chemotherapy and clinical characteristics was also explored. In addition, cfDNA and other tumor markers were subjected to specificity and sensitivity analyses using ROC. RESULTS: cfDNA concentration in advanced GC patients was significantly higher than that in healthy controls (P<0.05). The concentration of plasma cfDNA in patients with PD showed an increasing trend over time. The concentration of plasma cfDNA in patients with therapeutic effect of PR decreased over time. In patients with therapeutic effect of SD, the plasma DNA concentration showed a stable trend over time. There was no significant correlation between cfDNA concentration and factors including gender, age, pathological type, CA724, CA125,CA199, AFP and CEA. ROC results showed that the area under the curve of cfDNA was larger than other tumor markers. CONCLUSION: Plasma cfDNA concentration was significantly increased in patients with gastric cancer, and its diagnostic efficacy was superior to that of traditional tumor markers. It can be used as a tumor biomarker to monitor the efficacy of chemotherapy for gastric cancer.

5.
J Orthop Surg Res ; 15(1): 139, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32272956

ABSTRACT

BACKGROUND: This study was designed to evaluate the clinical outcomes of patients with diaphysis malignant tumors of femur and tibia treated with microwave ablation (MWA) in situ. METHODS: Retrospective study of 32 patients with diaphysis malignant bone tumors of femur or tibia have been treated by microwave ablation. Instead of en bloc resection, hyperthermia ablation in situ was carried out followed by strengthen procedure. The patients were followed up for a period ranging from 36 to 180 months. RESULTS: Twenty-five patients survived over 3 years and all of the patients alive have a satisfactory functional and cosmetic limb. The postoperative survival rate of MWA group was significantly higher than the amputation group in consecutive inclusions. CONCLUSIONS: MWA is a feasible and effective surgical method for limb salvage operation and it might offer an innovative and distinctive therapeutic alternative for diaphysis malignant bone tumors, which avoiding osteotomy or prosthesis replacement. LEVEL OF EVIDENCE: Level IV, clinical cohort study.


Subject(s)
Bone Neoplasms/diagnostic imaging , Bone Neoplasms/therapy , Microwaves/therapeutic use , Radiofrequency Ablation/trends , Tibia/diagnostic imaging , Adolescent , Adult , Aged , Amputation, Surgical/trends , Child , Cohort Studies , Diaphyses/diagnostic imaging , Diaphyses/surgery , Female , Femoral Neoplasms , Humans , Male , Middle Aged , Radiofrequency Therapy/trends , Retrospective Studies , Tibia/surgery , Treatment Outcome , Young Adult
6.
Article in English | MEDLINE | ID: mdl-31817551

ABSTRACT

Rapid urbanization in China not only promotes the rapid expansion of urban population and economic agglomeration, but also causes the aggravation of haze pollution. In order to better clarify the asymmetric and nonlinear effects of urban scale and agglomeration on haze pollution, this paper quantitatively evaluates the spatial spillover effects of population size and economic agglomeration on haze pollution in 342 Chinese cities from 2001 to 2016 by using exploratory spatial data analysis (ESDA) and spatial econometric model. The results show the following: (1) During the research period, the distribution of urban scale, agglomeration, and haze pollution in China presented complex asymmetrical features, with the former two presenting a "core-periphery" distribution mode, while the latter having a tendency to spread around. In addition, under the influence of urban population size and economic agglomeration, haze pollution in Chinese cities presents significant spatial autocorrelation, with the agglomeration degrees showing a fluctuating upward trend during the study period. (2) Both urban scale and urban agglomeration have positive global spatiotemporal correlation with haze pollution. Local spatial correlation features are more obvious in China's emerging urban agglomerations like Beijing-Tianjin-Hebei and Yangtze River Delta. (3) The spatial effects of haze pollution are better evaluated by spatial Durbin model (SDM) with spatial fixed effects, obtaining a coefficient of 0.416, indicating haze in neighboring cities affected each other and had significant spillover. By decomposing the effect of urban scale and agglomeration on haze as direct and indirect effects, the direct effect of urban population size and the indirect effect of urban economic agglomeration are found to be more prominent, reflecting that significant asymmetrical characteristics exist in the spatial effects of urban size and agglomeration on urban haze. (4) Among the control variables that affect China's rapid urbanization, the level of urban economic development has a positive effect on haze pollution, while the high-level industrial structure and improved technical level can effectively reduce haze pollution. Continuous decline of haze concentration of Chinese cities in recent years has been indicating the spatial relationships between haze and urban size and agglomeration have a decoupling trend. The findings contribute to theory by emphasizing the spillover effect and spatial heterogeneities of geographical factors, and have implications for policy makers to deal with haze pollution reasonably and effectively.


Subject(s)
Environmental Pollution , Urbanization , Beijing , China , Cities , Economic Development , Geography , Industry , Rivers , Spatial Analysis
7.
Cell Death Dis ; 10(8): 575, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366916

ABSTRACT

Most circulating tumor cells (CTCs) die during the process of metastasis, but self-seeding CTCs can invade the primary tumor or form clinically meaningful metastases. This study aimed to evaluate the capacity of self-seeding CTCs to promote osteosarcoma growth and lung metastasis and to clarify the specific role of interleukin (IL)-8 in CTC self-seeding. We successfully isolated and cultured self-seeding CTCs through a self-seeding nude mouse model established using green fluorescent protein (GFP)-labeled F5M2 cells and found that self-seeding CTCs exhibit increased cellular proliferation, migration, and invasion in vitro, increased tumor growth and lung metastasis in mice, and increased IL-8 expression. Furthermore, suppressing IL-8 inhibited tumor growth and metastasis and reduced CTC seeding in primary tumors in vitro and in vivo. In osteosarcoma patients, IL-8 levels significantly correlated with the Enneking stage and metastasis. These findings demonstrate that self-seeding osteosarcoma CTCs can promote tumor growth and lung metastasis through IL-8. Their increased metastatic potential and elevated IL-8 expression suggest a novel strategy for future therapeutic interventions to prevent osteosarcoma progression and metastasis.


Subject(s)
Interleukin-8/genetics , Lung Neoplasms/genetics , Neoplastic Cells, Circulating/metabolism , Osteosarcoma/genetics , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Osteosarcoma/blood , Osteosarcoma/pathology
8.
Front Surg ; 6: 5, 2019.
Article in English | MEDLINE | ID: mdl-30891449

ABSTRACT

Background: En bloc tumor resection followed by reconstruction is a widely used surgical treatment for malignant pelvic bone tumors. High rates of complications and mechanical instability often contribute to poor postoperative results. We attempted en bloc microwave ablation (MWA) in situ to improve the outcome. Methods: From May 1995 to December 2015, 104 patients with primary pelvic malignancy received radical MWA in our department. After careful dissection of the tumor-bearing bone from surrounding normal tissues with safe margins, a microwave antenna array was inserted into the tumor mass to emit electromagnetic energy, inducing tumor cellular death via thermocoagulation. The loose, devitalized tumor tissues were removed by cutting or curettage, leaving a defective bone scaffold. Re-strengthening by autograft or allograft was needed in most patients. Results: The over 3 years survival rate was 51.5% for high-grade malignancies (among them, 26.9% were osteosarcoma) and 94.8% for low-grade malignancies (chondrosarcoma). In most of the living patients, cosmetic and useful limbs were preserved. The mean functional score (Musculoskeletal Tumor Society) was 27 or 90% (range: 25-30, 75-100%). Among the 56 patients who belonged to the excellent function group, 11 were followed up for more than 10 years. The local recurrence rate was 8.6%. Among the 9 patients with recurrence, 5 died from disease, 2 were treated by hemipelvic amputation, and 2 underwent revision surgery with MWA and gained local control. The deep infection rate was 5.6%. All six patients with infection were healed by irrigation, debridement, and systemic antibiotic administration. Conclusion: Local, microwave-induced hyperthermia for treating malignant pelvic bone tumors is an effective alternative method. The oncological and functional results are encouraging. The use of MWA should be continued to evaluate and improve this new therapeutic system.

9.
J Cancer Res Ther ; 14(Supplement): S152-S158, 2018.
Article in English | MEDLINE | ID: mdl-29578166

ABSTRACT

CONTEXT: Hyperthermia has now been used to treat many kinds of solid malignancies. However, the applied thermal parameters about heat temperature and time varied all over the world, and no consensus about the optimal formula had been reached. Microwave ablation, as one of thermal ablation methods, is usually applied based on the fixed parameters of power and duration. As a result, too high temperature or overheating might not be avoided and excessive heating might cause some additional side effects to normal tissues. AIMS: To explore the optimal parameters of power and duration for the HELA and MG-63 cells in vitro. SETTINGS AND DESIGN: With a temperature-controlled microwave workstation, a microwave thermal ablation experiment was performed in vitro. SUBJECTS AND METHODS: The HELA and MG-63 cells were heated with 40°C, 45°C, 50°C, 55°C, and 60°C lasting for 5-30 min, respectively. Then, the cell viability was detected using four methods: Flow cytometer assay, nicotinamide adenine dinucleotide-diaphorase staining, Calcein-acetoxymethyl ester staining immediately after treatment, and CCK-8 assay 24 h later. RESULTS: The temperature-controlled microwave has an excellent ablation effect on both cell lines. Furthermore, when the thermal stimulation reached 55°C 25 min and 55°C 20 min for the HELA and MG-63 cells, respectively, or 60°C 5 min for both, all the viability indexes indicated immediately devitalization. CONCLUSION: It presented a preliminary minimum lethal dose of heat was validated on the cellular level in vitro, which should be verified and corrected further in vivo.


Subject(s)
Microwaves , Temperature , Biomarkers , Cell Line, Tumor , Cell Survival/radiation effects , Dihydrolipoamide Dehydrogenase/metabolism , Flow Cytometry , Fluoresceins , HeLa Cells , Humans , Hyperthermia, Induced/methods
10.
J Cell Biochem ; 119(1): 1093-1110, 2018 01.
Article in English | MEDLINE | ID: mdl-28696012

ABSTRACT

This study aimed to investigate the effects of SPAR signaling pathway on the restoration of motor function in ischemic stroke (IS). Sprague-Dawley male rats were separated into the control and sham groups, as well as the group for middle cerebral artery occlusion (MCAO) model establishment. Successfully established rat ischemic models were randomly divided into model, SNKMCAO-del and pcDNA3.1-SNK groups. The evaluation of motor function among the rats in each group was assessed using a balance beam, a screen test and the Garcia scoring method. CatWalk gait analysis was employed to evaluate the effect of the SNK signaling pathway on rat motor function. Triphenyltetrazolium chloride (TTC) and TUNEL staining were techniques were utilized for cerebral infarction (CI) area as well for hippocampal neuron apoptosis. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting methods were performed to detect mRNA and protein expressions of SNK and SPAR. When compared with the model group, the SNKMCAO-del group displayed decreased motor function score and CI area, while contrasting results were observed in the pcDNA3.1-SNK group. According to the results obtained from the CatWalk gait analysis, the SNKMCAO-del group showed a clear improvement compared to the model group whereas the pcDNA3.1-SNK group exhibited poorer results than the model group in the objective parameters of the study, such as movement, speed, running duration, print area, maximal contact area, maximal, mean intensity, and stride length. These findings suggested that SNK gene silencing promotes motor function by inhibiting the SNK-SPAR signaling pathway in rats with ischemic stroke.


Subject(s)
Brain Ischemia/therapy , GTPase-Activating Proteins/genetics , Gene Silencing , Protein Serine-Threonine Kinases/antagonists & inhibitors , Stroke/physiopathology , Animals , Brain Ischemia/complications , Brain Ischemia/physiopathology , Disease Models, Animal , GTPase-Activating Proteins/metabolism , Gait/drug effects , Genetic Vectors/administration & dosage , Humans , Male , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Signal Transduction , Stroke/etiology , Stroke/therapy
11.
Sci Rep ; 7(1): 6190, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28733631

ABSTRACT

Members of the mammalian Vestigial-like (VGLL) family of transcriptional cofactors activate genes in response to a wide variety of environmental cues. Recently, VGLL proteins have been proposed to regulate key signaling networks involved in cancer development and progression. However, the biological and clinical significance of VGLL dysregulation in human breast cancer pathogenesis remains unknown. Here, we report that diminished VGLL4 expression, but not VGLL1-3, correlated with both shorter relapse-free survival and shorter disease-specific survival of cancer patients with different molecular subtypes of breast cancer. Additionally, we further demonstrate that overexpression of VGLL4 reduces breast cancer cell proliferation, migration, intravasation/extravasation potential, favors cell death, and suppresses tumor growth in vivo. Mechanistically, VGLL4 negatively regulates the TEAD1-YAP1 transcriptional complex and exerts its growth inhibitory control through its evolutionary conserved TDU2 domain at its C-terminus. The results suggest that VGLL4 is a candidate tumor suppressor gene which acts by selectively antagonizing YAP-dependent tumor growth. VGLL4 may be a promising therapeutic target in breast cancer.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/pathology , DNA-Binding Proteins/genetics , Down-Regulation , Nuclear Proteins/genetics , Phosphoproteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , DNA-Binding Proteins/metabolism , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Transplantation , Nuclear Proteins/metabolism , Phenotype , Phosphoproteins/genetics , Protein Domains , Signal Transduction , Survival Analysis , TEA Domain Transcription Factors , Transcription Factors/chemistry , YAP-Signaling Proteins
12.
Exp Mol Pathol ; 103(1): 71-77, 2017 08.
Article in English | MEDLINE | ID: mdl-28655518

ABSTRACT

This study aims to explore the effects of long non-coding RNA H19 (lncRNA H19) and microRNA let7a (miRNA let7a) expression on the prognosis of thyroid cancer (TC). This may aid in the discovery of more effective treatment and prognosis approaches for TC. Between January 2008 and January 2011, 131 TC tissues and adjacent tissues were obtained from TC patients. An additional 122 normal thyroid tissues were also collected as normal controls from patients with benign thyroid lesions. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect lncRNA H19 and miRNA let7a mRNA expression. Five-year follow-ups were conducted. A Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic values of lncRNA H19 and miRNA let7a in TC. The Kaplan-Meier method was applied to analyze the 5-year survival rate of TC patients. Univariate and multivariate factor analyses were employed to analyze the prognostic factors of TC. The lncRNA H19 mRNA expression was higher while the miRNA let7a mRNA expression was lower in TC tissues than, in the normal thyroid tissues and adjacent tissues. The area under the ROC curve (AUC) of lncRNA H19 and miRNA let7a were 0.801 and 0.116, with sensitivity at 72.5% and 84%, as well as specificity 75.4% and 77%, respectively. In TC patients with tumor diameters≥1.0cm, lncRNA H19 mRNA expression was elevated, but miRNA let7a mRNA expression was reduced. This was also evident in TC patients with TNM stages III+IV and those with lymph node metastasis. TC patients with a lower 5-year survival rate showed upregulated levels of lncRNA H19 expression and, downregulated levels of miRNA let7a expression. LncRNA H19 and miRNA let7a expression, tumor diameter, TNM stage and lymph node metastasis were independent prognostic factors of TC. This study demonstrated that increased lncRNA H19 and decreased miRNA let7a expression levels are associated with poor prognosis in TC patients. An inverse relationship between lncRNA H19 and miRNA let7a expression levels was exhibited.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Case-Control Studies , Down-Regulation , Epigenesis, Genetic , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Lymphatic Metastasis/genetics , Male , MicroRNAs/genetics , Middle Aged , Multivariate Analysis , Prognosis , Proportional Hazards Models , RNA, Long Noncoding/genetics , ROC Curve , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Survival Rate , Thyroid Gland/pathology , Up-Regulation , Young Adult
14.
Oncol Lett ; 13(2): 681-685, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28356946

ABSTRACT

The treatment of malignant tumors following surgery is important in preventing relapse. Among all the post-surgery treatments, immunomodulators have demonstrated satisfactory effects on preventing recurrence according to recent studies. Ginsenoside is a compound isolated from panax ginseng, which is a famous traditional Chinese medicine. Ginsenoside aids in killing tumor cells through numerous processes, including the antitumor processes of ginsenoside Rh2 and Rg1, and also affects the inflammatory processes of the immune system. However, the role that ginsenoside serves in antitumor immunological activity remains to be elucidated. Therefore, the present study aimed to analyze the effect of ginsenoside Rh2 on the antitumor immunological response. With a melanoma mice model, ginsenoside Rh2 was demonstrated to inhibit tumor growth and improved the survival time of the mice. Ginsenoside Rh2 enhanced T-lymphocyte infiltration in the tumor and triggered cytotoxicity in spleen lymphocytes. In addition, the immunological response triggered by ginsenoside Rh2 could be transferred to other mice. In conclusion, the present study provides evidence that ginsenoside Rh2 treatment enhanced the antitumor immunological response, which may be a potential therapy for melanoma.

15.
Cancer Biol Ther ; 18(3): 177-185, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28278080

ABSTRACT

Drug resistance has always been the main problem in osteosarcoma treatment, and hypoxia seems to be one of the many causes for drug resistance. Therefore, in this study, we investigated how hypoxia triggers chemotherapy resistance in osteosarcoma. We first screened hypoxia- and normoxia- cultured osteosarcoma cells in silico to identify the differentially expressed genes specifically related to drug resistance. This led to the identification of spindle and kinetochore associated complex subunit 1 (SKA1) as a probable gene of interest. SKA1 was further overexpressed by a lentiviral vector into an osteosarcoma cell line to study its role in chemoresistance. Our data revealed that SKA1 overexpression reduced the expression of some multidrug resistance genes, and enhanced the sensitivity of two common chemotherapeutic drugs used in osteosarcoma patients, epirubicin (EPI) and ifosfamide (IFO). In addition, we also confirmed the role of SKA1 in EPI drug sensitivity in vivo. Taken together, our study indicated that hypoxia mediated downregulation of SKA1 expression increased the chemotherapy resistance in human osteosarcoma cells.


Subject(s)
Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Hypoxia/genetics , Chromosomal Proteins, Non-Histone/biosynthesis , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Adolescent , Animals , Bone Neoplasms/metabolism , Cell Line, Tumor , Child , Chromosomal Proteins, Non-Histone/genetics , Down-Regulation , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Microarray Analysis/methods , Osteosarcoma/metabolism , Young Adult
16.
Clin Orthop Relat Res ; 475(6): 1668-1677, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28194714

ABSTRACT

BACKGROUND: Amputation has been the standard surgical treatment for distal tibia osteosarcoma owing to its unique anatomic features. Preliminary research suggested that microwave-induced hyperthermia may have a role in treating osteosarcoma in some locations of the body (such as the pelvis), but to our knowledge, no comparative study has evaluated its efficacy in a difficult-to-treat location like the distal tibia. QUESTIONS: Does microwave-induced hyperthermia result in (1) improved survival, (2) decreased local recurrence, (3) improved Musculoskeletal Tumor Society (MSTS) scores, or (4) fewer complications than amputation in patients with a distal tibial osteosarcoma? METHODS: Between 2000 and 2015, we treated 79 patients for a distal tibia osteosarcoma without metastases. Of those, 52 were treated with microwave-induced hyperthermia, and 27 with amputation. Patients were considered eligible for microwave-induced hyperthermia if they had an at least 20-mm available distance from the tumor edge to the articular surface, good clinical and imaging response to neoadjuvant chemotherapy, and no pathologic fracture. Patients not meeting these indications were treated with amputation. In addition, if neither the posterior tibial artery nor the dorsalis pedis artery was salvageable, the patients were treated with amputation and were not included in any group in this study. A total of 13 other patients were treated with conventional limb-salvage resections and reconstructions (at the request of the patient, based on patient preference) and were not included in this study. All 79 patients in this retrospective study were available for followup at a minimum of 12 months (mean followup in the hyperthermia group, 79 months, range 12-158 months; mean followup in the amputation group, 95 months, range, 15-142 months). With the numbers available, the groups were no different in terms of sex, age, tumor grade, tumor stage, or tumor size. All statistical tests were two-sided, and a probability less than 0.05 was considered statistically significant. Survival to death was evaluated using Kaplan-Meier analysis. Complications were recorded from the patients' files and graded using the classification of surgical complications described by Dindo et al. RESULTS: In the limb-salvage group, Kaplan Meier survival at 6 years was 80% (95% CI, 63%-90%), and this was not different with the numbers available from survivorship in the amputation group at 6 years (70%; 95% CI, 37%-90%; p = 0.301).With the numbers available, we found no difference in local recurrence (six versus 0; p = 0.066). However mean ± SD MSTS functional scores were higher in patients who had microwave-induced hyperthermia compared with those who had amputations (85% ± 6% versus 66% ± 5%; p = 0.008).With the numbers available, we found no difference in the proportion of patients experiencing complications between the two groups (six of 52 [12%] versus three of 27 [11%]; p = 0.954). CONCLUSIONS: We were encouraged to find no early differences in survival, local recurrence, or serious complications between microwave-induced hyperthermia and amputation, and a functional advantage in favor of microwave-induced hyperthermia. However, these findings should be replicated in larger studies with longer mean duration of followup, and in studies that compare microwave-induced hyperthermia with conventional limb-sparing approaches. LEVEL OF EVIDENCE: Level III, therapeutic study.


Subject(s)
Amputation, Surgical/methods , Bone Neoplasms/surgery , Hypothermia, Induced/methods , Limb Salvage/methods , Osteosarcoma/surgery , Adolescent , Adult , Child , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Male , Microwaves/therapeutic use , Middle Aged , Retrospective Studies , Tibia/surgery , Treatment Outcome , Young Adult
17.
Springerplus ; 5(1): 1373, 2016.
Article in English | MEDLINE | ID: mdl-27606161

ABSTRACT

BACKGROUND: The current application of limb salvage process has some unsolved problems, such as prosthesis loosening, which severely limits the function of the preserved limbs. Innovative approaches are needed to further improve functional outcome. PATIENTS AND METHODS: Instead of en-bloc resection of tumor-bearing bone, it is dissected from the surrounding normal tissues, followed by devitalizing the bone segment and the extra-cortical bulk by microwave induced hyperthermia in situ through the antenna array. From May 1999 to March 2012, 544 patients with malignant bone tumors of the extremities were treated by the novel method. RESULTS: The over 3-year survival rate was 59.1 % for high-grade malignancy, 88.7 % for low-grade malignancy. In the majority of the patients, cosmetic and useful limbs were preserved. Local recurrence rate was 9.8 % for the high grade malignancy (mainly occurred at the early stage of the research). The overall fracture rate was 2.6 %. Deep infection rate was 1.8 %. The complication rate is lower than the literature reports. After heat necrosis, the dead bone maintains both the osteoconduction and osteoinduction properties. CONCLUSIONS: The application of microwave induced hyperthermia for treatment of malignant bone tumors, except the late diagnosed cases who's tumor-bearing bone was destroyed too severe to do biological reconstruction, is an effective, simple, and inexpensive method. The oncological and functional results are encouraging.

18.
Int J Mol Med ; 38(1): 201-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27247228

ABSTRACT

Osteoarthritis (OA) is the most prevalent degenerative joint disease with multifactorial etiology caused by risk factors such as ageing, obesity and trauma. Previously, it was reported that the inhibition of microRNA-34a (miR-34a) may reduce rat chondrocyte apoptosis induced by IL-1ß, whereas the molecular mechanism and the role of miR-34a in human chondrocyte as well as in OA progression remains to be determined. In the current study, using MTT, luciferase reporter assays and western blot analysis we identified that miR-34a was upregulated while silent information regulator 1 (SIRT1) was inhibited in chondrocytes from 12 OA patients compared with healthy chondrocytes from 10 trauma amputees. Overexpression of miR-34a promoted apoptosis and inhibited cell proliferation in human chondrocytes. Transfection with miR-34a mimic inhibited SIRT1 expression, which attenuated the deacetylation of p53, leading to the upregulation of Bax and downregulation of Bcl-2. Furthermore, results from the western blot analysis and luciferase reporter assay demonstrated that SIRT1 was directly regulated by miR-34a in human chondrocytes. A rat model of OA was induced through anterior cruciate ligament transection and medial meniscus resection (ACLT+MMx). The results showed that the intra­articular injection of lentiviral vector encoding anti-miR­34a sequence effectively ameliorated the progression of OA. The results suggest that miR-34a has a crucial role in the pathogenesis of OA through direct regulation of the SIRT1/p53 signaling pathway and serves as a potential therapeutic target of OA.


Subject(s)
Apoptosis , Chondrocytes/pathology , MicroRNAs/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology , Signal Transduction , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/genetics , Cartilage/metabolism , Cartilage/pathology , Case-Control Studies , Cell Proliferation , Chondrocytes/metabolism , Disease Progression , Humans , Male , MicroRNAs/genetics , Middle Aged , Oligonucleotides/metabolism , Rats, Sprague-Dawley , Reproducibility of Results , Transfection
19.
Sci Rep ; 6: 22106, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26911538

ABSTRACT

Different clinical results have been reported in the repair of extensor mechanism disruption using fresh-frozen complete extensor mechanism (CEM) allograft, creating a need for a better understanding of fresh-frozen CME allograft reconstruction. Here, we perform histological and biomechanical analyses of fresh-frozen CEM allograft or autograft reconstruction in an in vivo rabbit model. Our histological results show complete incorporation of the quadriceps tendon into the host tissues, patellar survival and total integration of the allograft tibia, with relatively fewer osteocytes, into the host tibia. Vascularity and cellularity are reduced and delayed in the allograft but exhibit similar distributions to those in the autograft. The infrapatellar fat pad provides the main blood supply, and the lowest cellularity is observed in the patellar tendon close to the tibia in both the allograft and autograft. The biomechanical properties of the junction of quadriceps tendon and host tissues and those of the allograft patellar tendon are completely and considerably restored, respectively. Therefore, fresh-frozen CEM allograft reconstruction is viable, but the distal patellar tendon and the tibial block may be the weak links of the reconstruction. These findings provide new insight into the use of allograft in repairing disruption of the extensor mechanism.


Subject(s)
Allografts , Autografts , Bone-Patellar Tendon-Bone Grafting , Osteocytes/physiology , Allografts/blood supply , Allografts/pathology , Animals , Autografts/blood supply , Autografts/pathology , Biomechanical Phenomena , Freezing , Models, Animal , Quadriceps Muscle/surgery , Rabbits , Reflex, Babinski , Tibia/surgery
20.
Oncotarget ; 7(1): 446-58, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26623559

ABSTRACT

Tumour self-seeding by circulating tumour cells (CTCs) enhances tumour progression and recurrence. Previously, we demonstrated that tumour self-seeding by CTCs occurs in osteosarcoma and revealed that interleukin-6 (IL-6) may promote CTC attraction. Here, we investigated the underlying mechanisms of IL-6 in tumour self-seeding by CTCs. IL-6 suppression inhibited in vitro cell proliferation, migration, and invasion. In addition, rhIL-6 activated the Janus-activated kinase/signal transducers and activators of transcription 3 (JAK/STAT3) and mitogen-activated protein kinase/extracellular-signal regulated kinase1/2 (MAPK/ERK1/2) pathways in vitro. Both pathways increased cell proliferation, but only the JAK/STAT3 pathway promoted migration. Suppressing IL-6 inhibited in vivo tumour growth and metastasis. IL-6 suppression or JAK/STAT3 pathway inhibition reduced CTC seeding in primary tumours. Collectively, IL-6 promotes tumour self-seeding by CTCs in a nude mouse model. This finding may provide a novel strategy for future therapeutic interventions to prevent osteosarcoma progression and recurrence.


Subject(s)
Bone Neoplasms/metabolism , Interleukin-6/metabolism , Neoplasm Seeding , Neoplastic Cells, Circulating/metabolism , Osteosarcoma/metabolism , Animals , Blotting, Western , Bone Neoplasms/blood , Bone Neoplasms/genetics , Cell Line , Cell Line, Tumor , Female , Humans , Interleukin-6/genetics , Janus Kinases/metabolism , Mice, Nude , Microscopy, Fluorescence , Mitogen-Activated Protein Kinases/metabolism , Osteosarcoma/blood , Osteosarcoma/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...