Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Med Phys ; 51(6): 4271-4282, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507259

ABSTRACT

BACKGROUND: In radiotherapy, real-time tumor tracking can verify tumor position during beam delivery, guide the radiation beam to target the tumor, and reduce the chance of a geometric miss. Markerless kV x-ray image-based tumor tracking is challenging due to the low tumor visibility caused by tumor-obscuring structures. Developing a new method to enhance tumor visibility for real-time tumor tracking is essential. PURPOSE: To introduce a novel method for markerless kV image-based tracking of lung tumors via deep learning-based target decomposition. METHODS: We utilized a conditional Generative Adversarial Network (cGAN), known as Pix2Pix, to build a patient-specific model and generate the synthetic decomposed target image (sDTI) to enhance tumor visibility on the real-time kV projection images acquired by the onboard kV imager equipped on modern linear accelerators. We used 4DCT simulation images to generate the digitally reconstructed radiograph (DRR) and DTI image pairs for model training. We augmented the training dataset by randomly shifting the 4DCT in the superior-inferior, anterior-posterior, and left-right directions during the DRR and DTI generation process. We performed real-time 2D tumor tracking via template matching between the DTI generated from the CT simulation and the sDTI generated from the real-time kV projection images. We validated the proposed method using nine patients' datasets with implanted beacons near the tumor. RESULTS: The sDTI can effectively improve the image contrast around the lung tumors on the kV projection images for the nine patients. With the beacon motion as ground truth, the tracking errors were on average 0.8 ± 0.7 mm in the superior-inferior (SI) direction and 0.9 ± 0.8 mm in the in-plane left-right (IPLR) direction. The percentage of successful tracking, defined as a tracking error less than 2 mm in the SI direction, is 92.2% on the 4312 tested images. The patient-specific model took approximately 12 h to train. During testing, it took approximately 35 ms to generate one sDTI, and 13 ms to perform the tumor tracking using template matching. CONCLUSIONS: Our method offers the potential solution for nearly real-time markerless lung tumor tracking. It achieved a high level of accuracy and an impressive tracking rate. Further development of 3D lung tumor tracking is warranted.


Subject(s)
Deep Learning , Four-Dimensional Computed Tomography , Image Processing, Computer-Assisted , Lung Neoplasms , Radiotherapy, Image-Guided , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Humans , Radiotherapy, Image-Guided/methods , Image Processing, Computer-Assisted/methods , Four-Dimensional Computed Tomography/methods
2.
Phys Med Biol ; 69(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38241714

ABSTRACT

Objective.We report on paraspinal motion and the clinical implementation of our proprietary software that leverages Varian's intrafraction motion review (IMR) capability for quantitative tracking of the spine during paraspinal SBRT. The work is based on our prior development and analysis on phantoms.Approach.To address complexities in patient anatomy, digitally reconstructed radiographs (DRR's) that highlight only the spine or hardware were constructed as tracking reference. Moreover, a high-pass filter and first-pass coarse search were implemented to enhance registration accuracy and stability. For evaluation, 84 paraspinal SBRT patients with sites spanning across the entire vertebral column were enrolled with prescriptions ranging from 24 to 40 Gy in one to five fractions. Treatments were planned and delivered with 9 IMRT beams roughly equally distributed posteriorly. IMR was triggered every 200 or 500 MU for each beam. During treatment, the software grabbed the IMR image, registered it with the corresponding DRR, and displayed the motion result in near real-time on auto-pilot mode. Four independent experts completed offline manual registrations as ground truth for tracking accuracy evaluation.Main results.Our software detected ≥1.5 mm and ≥2 mm motions among 17.1% and 6.6% of 1371 patient images, respectively, in either lateral or longitudinal direction. In the validation set of 637 patient images, 91.9% of the tracking errors compared to manual registration fell within ±0.5 mm in either direction. Given a motion threshold of 2 mm, the software accomplished a 98.7% specificity and a 93.9% sensitivity in deciding whether to interrupt treatment for patient re-setup.Significance.Significant intrafractional motion exists in certain paraspinal SBRT patients, supporting the need for quantitative motion monitoring during treatment. Our improved software achieves high motion tracking accuracy clinically and provides reliable guidance for treatment intervention. It offers a practical solution to ensure accurate delivery of paraspinal SBRT on a conventional Linac platform.


Subject(s)
Radiosurgery , Humans , Radiosurgery/methods , Software , Motion , Radiotherapy Planning, Computer-Assisted
3.
Adv Radiat Oncol ; 8(6): 101276, 2023.
Article in English | MEDLINE | ID: mdl-38047221

ABSTRACT

Purpose: Deep inspiration breath hold (DIBH) is an effective technique to spare the heart in treating left-sided breast cancer. Surface-guided radiation therapy (SGRT) is increasingly applied in DIBH setup and motion monitoring. Patient-specific breathing behavior, either thoracically driven or abdominally driven (A-DIBH), should be unaltered, online identified, and monitored accordingly to ensure reproducible heart-sparing treatment. Methods and Materials: Sixty patients with left-sided breast cancer treated with SGRT were analyzed: 20 A-DIBH patients with vertical chest elevation (VCE ≤ 5 mm) were prospectively identified, and 40 control patients were retrospectively and randomly selected for comparison. At simulation, both free-breathing (FB) and DIBH computed tomography (CT) were acquired, guided by a motion surrogate placed around the xiphoid process. For SGRT treatment setups, the region of interest (ROI) was defined on the CT chest surface, and the surrogate-based setup was a backup. For all 60 patients, the VCE was measured as the average of the FB-to-DIBH elevations at the breast and xiphoid process, together with abdominal elevation. In the 40-patient control group, A-DIBH patients (VCE ≤ 5 mm) were identified. Of the 20 A-DIBH patients, 10 were treated with volumetric modulated arc therapy plans, and 10 patients were treated with tangent plans. Clinical DIBH plans were recalculated on FB CT to compare maximum dose (DMax), 5% of the maximum dose (D5%), mean dose (DMean), and V30Gy, V20Gy, and V5Gy of the heart and lungs and their significance. Results: In the 20 A-DIBH patients, VCE = 3 ± 2 mm, surrogate motion (9 ± 6 mm), and abdomen motion of 14 ± 5 mm are found. Heart dose reduction from FB to DIBH is significant (P < .01): ∆DMax = -8.4 ± 9.8 Gy, ∆D5% = -2.4 ± 4.4 Gy, and ∆DMean = -0.6 ± 0.9 Gy. Six out of 40 control patients (15%) are found to have VCE ≤ 5 mm. Conclusions: A-DIBH (VCE ≤ 5 mm) patient population is significant (15%), and they should be identified in the SGRT workflow and monitored accordingly. A new abdominal ROI or an abdominal surrogate should be used instead of the conventional chest-only ROI. Patient-specific DIBH should be preserved for higher reproducibility to ensure heart sparing.

4.
Med Phys ; 50(9): 5343-5353, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37538040

ABSTRACT

BACKGROUND: X-ray image quality is critical for accurate intrafraction motion tracking in radiation therapy. PURPOSE: This study aims to develop a deep-learning algorithm to improve kV image contrast by decomposing the image into bony and soft tissue components. In particular, we designed a priori attention mechanism in the neural network framework for optimal decomposition. We show that a patient-specific prior cross-attention (PCAT) mechanism can boost the performance of kV image decomposition. We demonstrate its use in paraspinal SBRT motion tracking with online kV imaging. METHODS: Online 2D kV projections were acquired during paraspinal SBRT for patient motion monitoring. The patient-specific prior images were generated by randomly shifting and rotating spine-only DRR created from the setup CBCT, simulating potential motions. The latent features of the prior images were incorporated into the PCAT using multi-head cross attention. The neural network aimed to learn to selectively amplify the transmission of the projection image features that correlate with features of the priori. The PCAT network structure consisted of (1) a dual-branch generator that separates the spine and soft tissue component of the kV projection image and (2) a dual-function discriminator (DFD) that provides the realness score of the predicted images. For supervision, we used a loss combining mean absolute error loss, discriminator loss, perceptual loss, total variation, and mean squared error loss for soft tissues. The proposed PCAT approach was benchmarked against previous work using the ResNet generative adversarial network (ResNetGAN) without prior information. RESULTS: The trained PCAT had improved performance in effectively retaining and preserving the spine structure and texture information while suppressing the soft tissues from the kV projection images. The decomposed spine-only x-ray images had the submillimeter matching accuracy at all beam angles. The decomposed spine-only x-ray significantly reduced the maximum errors to 0.44 mm (<2 pixels) in comparison to 0.92 mm (∼4 pixels) of ResNetGAN. The PCAT decomposed spine images also had higher PSNR and SSIM (p-value < 0.001). CONCLUSION: The PCAT selectively learned the important latent features by incorporating the patient-specific prior knowledge into the deep learning algorithm, significantly improving the robustness of the kV projection image decomposition, and leading to improved motion tracking accuracy in paraspinal SBRT.


Subject(s)
Algorithms , Neural Networks, Computer , Humans , Motion
5.
Med Phys ; 50(12): 7791-7805, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37399367

ABSTRACT

BACKGROUND: Intrafraction motion monitoring in External Beam Radiation Therapy (EBRT) is usually accomplished by establishing a correlation between the tumor and the surrogates such as an external infrared reflector, implanted fiducial markers, or patient skin surface. These techniques either have unstable surrogate-tumor correlation or are invasive. Markerless real-time onboard imaging is a noninvasive alternative that directly images the target motion. However, the low target visibility due to overlapping tissues along the X-ray projection path makes tumor tracking challenging. PURPOSE: To enhance the target visibility in projection images, a patient-specific model was trained to synthesize the Target Specific Digitally Reconstructed Radiograph (TS-DRR). METHODS: Patient-specific models were built using a conditional Generative Adversarial Network (cGAN) to map the onboard projection images to TS-DRR. The standard Pix2Pix network was adopted as our cGAN model. We synthesized the TS-DRR based on the onboard projection images using phantom and patient studies for spine tumors and lung tumors. Using previously acquired CT images, we generated DRR and its corresponding TS-DRR to train the network. For data augmentation, random translations were applied to the CT volume when generating the training images. For the spine, separate models were trained for an anthropomorphic phantom and a patient treated with paraspinal stereotactic body radiation therapy (SBRT). For lung, separate models were trained for a phantom with a spherical tumor insert and a patient treated with free-breathing SBRT. The models were tested using Intrafraction Review Images (IMR) for the spine and CBCT projection images for the lung. The performance of the models was validated using phantom studies with known couch shifts for the spine and known tumor deformation for the lung. RESULTS: Both the patient and phantom studies showed that the proposed method can effectively enhance the target visibility of the projection images by mapping them into synthetic TS-DRR (sTS-DRR). For the spine phantom with known shifts of 1 mm, 2 mm, 3 mm, and 4 mm, the absolute mean errors for tumor tracking were 0.11 ± 0.05 mm in the x direction and 0.25 ± 0.08 mm in the y direction. For the lung phantom with known tumor motion of 1.8 mm, 5.8 mm, and 9 mm superiorly, the absolute mean errors for the registration between the sTS-DRR and ground truth are 0.1 ± 0.3 mm in both the x and y directions. Compared to the projection images, the sTS-DRR has increased the image correlation with the ground truth by around 83% and increased the structural similarity index measure with the ground truth by around 75% for the lung phantom. CONCLUSIONS: The sTS-DRR can greatly enhance the target visibility in the onboard projection images for both the spine and lung tumors. The proposed method could be used to improve the markerless tumor tracking accuracy for EBRT.


Subject(s)
Cone-Beam Computed Tomography , Lung Neoplasms , Humans , Cone-Beam Computed Tomography/methods , Motion , Lung , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiography , Phantoms, Imaging
6.
Phys Med Biol ; 68(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36549010

ABSTRACT

Objective. Motion tracking with simultaneous MV-kV imaging has distinct advantages over single kV systems. This research is a feasibility study of utilizing this technique for spine stereotactic body radiotherapy (SBRT) through phantom and patient studies.Approach. A clinical spine SBRT plan was developed using 6xFFF beams and nine sliding-window IMRT fields. The plan was delivered to a chest phantom on a linear accelerator. Simultaneous MV-kV image pairs were acquired during beam delivery. KV images were triggered at predefined intervals, and synthetic MV images showing enlarged MLC apertures were created by combining multiple raw MV frames with corrections for scattering and intensity variation. Digitally reconstructed radiograph (DRR) templates were generated using high-resolution CBCT reconstructions (isotropic voxel size (0.243 mm)3) as the reference for 2D-2D matching. 3D shifts were calculated from triangulation of kV-to-DRR and MV-to-DRR registrations. To evaluate tracking accuracy, detected shifts were compared to known phantom shifts as introduced before treatment. The patient study included a T-spine patient and an L-spine patient. Patient datasets were retrospectively analyzed to demonstrate the performance in clinical settings.Main results. The treatment plan was delivered to the phantom in five scenarios: no shift, 2 mm shift in one of the longitudinal, lateral and vertical directions, and 2 mm shift in all the three directions. The calculated 3D shifts agreed well with the actual couch shifts, and overall, the uncertainty of 3D detection is estimated to be 0.3 mm. The patient study revealed that with clinical patient image quality, the calculated 3D motion agreed with the post-treatment cone beam CT. It is feasible to automate both kV-to-DRR and MV-to-DRR registrations using a mutual information-based method, and the difference from manual registration is generally less than 0.3 mm.Significance. The MV-kV imaging-based markerless motion tracking technique was validated through a feasibility study. It is a step forward toward effective motion tracking and accurate delivery for spinal SBRT.


Subject(s)
Radiosurgery , Humans , Radiosurgery/methods , Retrospective Studies , Feasibility Studies , Motion , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods
7.
J Appl Clin Med Phys ; 23(6): e13594, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35338583

ABSTRACT

PURPOSE: Stereotactic paraspinal treatment has become increasingly popular due to its favorable clinical outcome. An often-overlooked factor that compromises the effectiveness of such treatment is the patients' involuntary intrafractional motion. This work introduces and validates a proprietary software application that quantifies such motion for accurate patient monitoring during treatment. METHODS: The software uses a separate full-trajectory cone-beam computed tomography (CBCT) after daily patient setup to establish reference projections. Once treatment starts, the software grabs the intrafraction motion review (IMR) image acquired by TrueBeam via the Varian iTools Capture software and compares it against the corresponding reference projection to instantly determine the 2D shifts of the vertebrae being monitored using the classical downhill simplex optimization method. To evaluate its performance, an anthropomorphic phantom was shifted 0, 0.6, 1.2, 1.8, 2.4, 3.0, and 5 mm in three orthogonal directions, immediately after the full-trajectory CBCT but prior to treatment. Depending on the scenario of shift, a nine-field fixed gantry intensity-modulated radiation therapy (IMRT) plan and/or a four partial-posterior-arcs volume-modulated radiation therapy (VMAT) plan were delivered. For the IMRT plan, three IMR images were acquired sequentially every 200 monitor units (MU) at each treatment angle. For the VMAT plan, one IMR image was acquired every 15° of each arc. For each IMR image, the software-reported 2D shift was compared with the ground truth. Certain tests were repeated with 1°, 2°, and 3° of rotation, pitch, and roll, respectively. Some of these tests were also repeated independently on separate days. RESULTS: Based on the group of tests that involved only the IMRT delivery, the maximum standard deviation of the software-reported shifts for each set of three IMR images was 0.16 mm, with 95th percentile at 0.02 mm. For translational shift, the maximum registration error was 0.44 mm, with 95th percentile at 0.23 mm. Left unaccounted for, rotation and pitch degraded the registration accuracy mainly in the longitudinal direction, while roll degraded it mainly in the lateral direction. The degradation of registration accuracy is positively related to the degree of rotation, pitch, and roll. The maximum registration errors under 3° rotation, pitch, and roll were 2.97, 1.44, 2.72 mm, respectively. Based on the group of tests that compared IMRT delivery with VMAT delivery, the registration errors slightly increased as magnitude of shifts increased; however, they were well under the 0.5-mm threshold. No significant differences in registration errors were observed between IMRT and VMAT deliveries. In addition, the variation in registration errors among different days was limited for both IMRT and VMAT deliveries. CONCLUSIONS: Our proprietary software has high repeatability, both intrafractionally and interfractionally, and high accuracy in registering IMR images with the reference projections for motion monitoring, regardless of the magnitude of shifts or treatment delivery technique. Rotation, pitch, and roll degrade registration accuracy and need to be accounted for in the future work.


Subject(s)
Radiotherapy, Intensity-Modulated , Cone-Beam Computed Tomography/methods , Humans , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Rotation , Software
8.
Med Phys ; 48(12): 7590-7601, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34655442

ABSTRACT

PURPOSE:  On-treatment kV images have been used in tracking patient motion. One challenge of markerless motion tracking in paraspinal SBRT is the reduced contrast when the X-ray beam needs to pass through a large portion of the patient's body, for example, from the lateral direction. Besides, due to the spine's overlapping with the surrounding moving organs in the X-ray images, auto-registration could lead to potential errors. This work aims to automatically extract the spine component from the conventional 2D X-ray images, to achieve more robust and more accurate motion management. METHODS:  A ResNet generative adversarial network (ResNetGAN) consisting of one generator and one discriminator was developed to learn the mapping between 2D kV image and the reference spine digitally reconstructed radiograph (DRR). A tailored multi-channel multi-domain loss function was used to improve the quality of the decomposed spine image. The trained model took a 2D kV image as input and learned to generate the spine component of the X-ray image. The training dataset included 1347 2D kV thoracic and lumbar region X-ray images from 20 randomly selected patients, and the corresponding matched reference spine DRR. Another 226 2D kV images from the remaining four patients were used for evaluation. The resulted decomposed spine images and the original X-ray images were registered to the reference spine DRRs, to compare the spine tracking accuracy. RESULTS:  The decomposed spine image had the mean peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of 60.08 and 0.99, respectively, indicating the model retained and enhanced the spine structure information in the original 2D X-ray image. The decomposed spine image matching with the reference spine DRR had submillimeter accuracy (in mm) with a mean error of 0.13, 0.12, and a maximum of 0.58, 0.49 in the x - and y -directions (in the imager coordinates), respectively. The accuracy improvement is robust in all lateral and anteroposterior X-ray beam angles. CONCLUSION:  We developed a deep learning-based approach to remove soft tissues in the kV image, leading to more accurate spine tracking in paraspinal SBRT.


Subject(s)
Radiosurgery , Humans , Motion , Neural Networks, Computer , Signal-To-Noise Ratio , Spine/diagnostic imaging , Spine/surgery
9.
Med Phys ; 47(7): 3243-3249, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32279337

ABSTRACT

PURPOSE/OBJECTIVES: To provide an order of magnitude estimate of the minimum dose rate ( R min ) required by pulsed ultra-high dose rate radiotherapy (FLASH RT) using dimensional analysis. MATERIALS/METHODS: In this study, we postulate that radiation-induced transient hypoxia inside normal tissue cells during FLASH RT results in better normal tissue sparing over conventional dose rate radiotherapy. We divide the process of cell irradiation by an ultra-short radiation pulse into three sequential phases: (a) The radiation pulse interacts with the normal tissue cells and produces radiation-induced species. (b) The radiation-induced species react with oxygen molecules and reduce the cell environmental oxygen concentration ( O 2 ). (c) Oxygen molecules, from nearest capillaries, diffuse slowly back into the resulted low O 2 regions. By balancing the radiation-induced oxygen depletion in phase II and diffusion-resulted O 2 replenishment in phase III, we can estimate the maximum allowed pulse repetition interval to produce a pulse-to-pulse superimposed O 2 reduction against the baseline O 2 . If we impose a threshold in radiosensitivity reduction to achieve clinically observable radiotherapy oxygen effect and combine the processes mentioned above, we could estimate the R min required for pulsed FLASH RT through dimensional analysis. RESULTS: The estimated R min required for pulsed FLASH RT is proportional to the product of the oxygen diffusion coefficient and O 2 inside the cell, and inversely proportional to the product of the square of the oxygen diffusion distance and the drop of intracellular O 2 per unit radiation dose. Under typical conditions, our estimation matches the order of magnitude with the dose rates observed in the recent FLASH RT experiments. CONCLUSIONS: The R min introduced in this paper can be useful when designing a FLASH RT system. Additionally, our analysis of the chemical and physical processes may provide some insights into the FLASH RT mechanism.


Subject(s)
Radiation Injuries , Radiation Oncology , Humans , Oxygen , Radiation Tolerance , Radiotherapy , Radiotherapy Dosage
10.
J Xray Sci Technol ; 28(1): 71-82, 2020.
Article in English | MEDLINE | ID: mdl-31904001

ABSTRACT

BACKGROUND: Versa HD linear accelerators (linacs) are used for stereotactic radiosurgery treatment. However, the mechanical accuracy of such systems remains a concern. OBJECTIVE: The purpose of this study was to evaluate the accuracy of an Elekta Versa HD linac. METHODS: We performed measurements with a ball bearing phantom to calculate the rotational isocenter radii of the linac's gantry, collimator, and table, and determine the relative locations of those isocenters. We evaluated the accuracy of the cone-beam computed tomography (CBCT) guidance with a film-embedding head phantom and circular cone-collimated radiation beams. We also performed dosimetric simulations to study the effects of the linac mechanical uncertainties on non-coplanar cone arc delivery. RESULTS: The mechanical uncertainty of the linac gantry rotation was 0.78 mm in radius, whereas that of the collimator and the table was <0.1 mm and 0.33 mm, respectively. The axes of rotation of the collimator and the table were coinciding with and 0.13 mm away from the gantry isocenter, respectively. Experiments with test plans demonstrated the limited dosimetric consequences on the circular arc delivery given the aforementioned mechanical uncertainties. End-to-end measurements determined that the uncertainty of the CBCT guidance was≤1 mm in each direction with respect to the reference CT image. CONCLUSIONS: In arc delivery, the mechanical uncertainties associated with the gantry and the table do not require remarkable increases in geometric margins. If large enough, the residual setup errors following CBCT guidance will dominate the overall dosimetric consequence. Therefore, the Versa HD linac is a valid system for stereotactic radiosurgery using non-coplanar arc delivery.


Subject(s)
Cone-Beam Computed Tomography/methods , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiosurgery/instrumentation , Radiosurgery/methods , Equipment Design , Head/diagnostic imaging , Humans , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results
11.
Med Phys ; 45(5): 1822-1831, 2018 May.
Article in English | MEDLINE | ID: mdl-29520796

ABSTRACT

OBJECTIVES: To apply advanced statistical and computational methodology in evaluating the impact of anatomical and technical variables on normal tissue dosimetry of trigeminal neuralgia (TN) stereotactic radiosurgery (SRS). METHODS: Forty patients treated with LINAC-based TN SRS with 90 Gy maximum dose were randomly selected for the study. Parameters extracted from the treatment plans for the study included three dosimetric output variables: the maximum dose to the brainstem (BSmax), the volume of brainstem that received at least 10 Gy (V10BS), and the volume of normal brain that received at least 12 Gy (V12). We analyzed five anatomical variables: the incidence angle of the nerve with the brainstem surface (A), the nerve length (L), the nerve width as measured both axially (WA) and sagittally (WS), the distance measured along the nerve between the isocenter and the brainstem surface (D), and one technical variable: the utilized cone size (CS). Univariate correlation was calculated for each pair among all parameters. Multivariate regression models were fitted for the output parameters using the optimal input parameters selected by the Gaussian graphic model LASSO. Repeated twofold cross-validations were used to evaluate the models. RESULTS: Median BSmax, V10BS, and V12 for the 40 patients were 35.7 Gy, 0.14 cc, and 1.28 cc, respectively. Median A, L, WA, WS, D, and CS were 43.7°, 8.8 mm, 2.8 mm, 2.7 mm, 4.8 mm, and 6 mm, respectively. Of the three output variables, BSmax most strongly correlated with the input variables. Specifically, it had strong, negative correlations with the input anatomical variables and a positive correlation with CS. The correlation between D and BSmax at -0.51 was the strongest correlation between single input and output parameters, followed by that between CS and V10BS at 0.45, and that between A and BSmax at -0.44. V12 was most correlated with cone size alone, rather than anatomy. LASSO identified an optimal 3-feature combination of A, D, and CS for BSmax and V10BS prediction. Using cross-validation, the multivariate regression models with the three selected features yielded stronger correlations than the correlation between the BSmax and V10BS themselves. CONCLUSIONS: For the first time, an advanced statistical and computational methodology was applied to study the impact of anatomical and technical variables on TN SRS. The variables were found to impact brainstem doses, and reasonably strong correlation models were established using an optimized 3-feature combination including the nerve incidence angle, cone size, and isocenter-brainstem distance.


Subject(s)
Brain Stem/radiation effects , Radiosurgery , Statistics as Topic , Trigeminal Neuralgia/radiotherapy , Humans , Radiometry , Radiotherapy Planning, Computer-Assisted , Regression Analysis , Trigeminal Neuralgia/pathology
12.
J Appl Clin Med Phys ; 18(6): 194-199, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29087037

ABSTRACT

PURPOSE: Equivalent Square (ES) enables the calculation of many radiation quantities for rectangular treatment fields, based only on measurements from square fields. While it is widely applied in radiotherapy, its accuracy, especially for extremely elongated fields, still leaves room for improvement. In this study, we introduce a novel explicit ES formula based on Weighted Power Mean (WPM) function and compare its performance with the Sterling formula and Vadash/Bjärngard's formula. METHODS: The proposed WPM formula is ESWPMa,b=waα+1-wbα1/α for a rectangular photon field with sides a and b. The formula performance was evaluated by three methods: standard deviation of model fitting residual error, maximum relative model prediction error, and model's Akaike Information Criterion (AIC). Testing datasets included the ES table from British Journal of Radiology (BJR), photon output factors (Scp ) from the Varian TrueBeam Representative Beam Data (Med Phys. 2012;39:6981-7018), and published Scp data for Varian TrueBeam Edge (J Appl Clin Med Phys. 2015;16:125-148). RESULTS: For the BJR dataset, the best-fit parameter value α = -1.25 achieved a 20% reduction in standard deviation in ES estimation residual error compared with the two established formulae. For the two Varian datasets, employing WPM reduced the maximum relative error from 3.5% (Sterling) or 2% (Vadash/Bjärngard) to 0.7% for open field sizes ranging from 3 cm to 40 cm, and the reduction was even more prominent for 1 cm field sizes on Edge (J Appl Clin Med Phys. 2015;16:125-148). The AIC value of the WPM formula was consistently lower than its counterparts from the traditional formulae on photon output factors, most prominent on very elongated small fields. CONCLUSION: The WPM formula outperformed the traditional formulae on three testing datasets. With increasing utilization of very elongated, small rectangular fields in modern radiotherapy, improved photon output factor estimation is expected by adopting the WPM formula in treatment planning and secondary MU check.


Subject(s)
Neoplasms/radiotherapy , Particle Accelerators/statistics & numerical data , Photons , Radiotherapy Planning, Computer-Assisted/methods , Data Collection , Humans , Particle Accelerators/instrumentation , Radiology , Radiotherapy Dosage
13.
Technol Cancer Res Treat ; 16(3): 257-266, 2017 06.
Article in English | MEDLINE | ID: mdl-26868850

ABSTRACT

PURPOSE: The efficacy of image-guided high-dose rate brachytherapy for cervical cancer is limited by the ineffective rectal sparing devices available commercially and the potential applicator movement. We developed a novel device using a balloon catheter and a belt immobilization system, serving for rectal dose reduction and applicator immobilization purposes, respectively. METHODS: The balloon catheter is constructed by gluing a short inflatable tube to a long regular open-end catheter. Contrast agent (10) cm3 is injected into the inflatable end, which is affixed to the tandem and ring applicator, to displace the posterior vaginal wall. The belt immobilization system consists of a specially designed bracket that can hold and fix itself to the applicator, a diaper-like Velcro fastener package used for connecting the patient's pelvis to the bracket, and a buckle that holds the fasteners to stabilize the whole system. The treatment data for 21 patients with cervical cancer using both balloon catheter and belt immobilization system were retrospectively analyzed. Computed tomography and magnetic resonance images, acquired about 30 minutes apart, were registered to evaluate the effectiveness of the immobilization system. RESULTS: In comparison with a virtual rectal blade, the balloon decreased the rectal point dose by 34% ± 4.2% (from 276 ± 57 to 182 ± 38 cGy), corresponding to an extra sparing distance of 7.9 ± 1.1 mm. The maximum sparing distance variation per patient is 1.4 ± 0.6 mm, indicating the high interfractional reproducibility for rectum sparing. With the immobilization system, the mean translational and rotational displacements of the applicator set are <3 mm and <1.5°, respectively, in all directions. CONCLUSIONS: The rectal balloon provides significant dose reduction to the rectum and it may potentially minimize patient discomfort. The immobilization system permits almost no movement of the applicator during treatment. This work has the potential to be promoted as a standardized solution for high-dose rate treatment of cervical cancer.


Subject(s)
Brachytherapy/methods , Radiotherapy Dosage , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Catheters , Cervix Uteri/diagnostic imaging , Cervix Uteri/pathology , Cervix Uteri/radiation effects , Contrast Media/administration & dosage , Female , Humans , Magnetic Resonance Imaging , Rectum/diagnostic imaging , Rectum/pathology , Rectum/radiation effects , Tomography, X-Ray Computed , Uterine Cervical Neoplasms/pathology
14.
Med Phys ; 43(5): 2081, 2016 May.
Article in English | MEDLINE | ID: mdl-27147320

ABSTRACT

PURPOSE: To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). METHODS: A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit "real" ones when the optimization converges. Three DRFs (Gaussian, Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%-80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. RESULTS: The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. CONCLUSIONS: Although all three DRFs were found adequate to represent the response of the studied ionization chambers, the Gaussian function was favored due to its superior overall performance. The geometry dependence of the DRFs can be significant for clinical applications involving small fields such as stereotactic radiotherapy.


Subject(s)
Particle Accelerators/instrumentation , Algorithms , Models, Theoretical , Radiation Dosage
15.
J Appl Clin Med Phys ; 16(6): 65-75, 2015 11 08.
Article in English | MEDLINE | ID: mdl-26699555

ABSTRACT

In the era of high-precision radiotherapy, cone-beam CT (CBCT) is frequently utilized for on-board treatment guidance. However, CBCT images usually contain severe shading artifacts due to strong photon scatter from illumination of a large volume and non-optimized patient-specific data measurements, limiting the full clinical applications of CBCT. Many algorithms have been proposed to alleviate this problem by data correction on projections. Sophisticated methods have also been designed when prior patient information is available. Nevertheless, a standard, efficient, and effective approach with large applicability remains elusive for current clinical practice. In this work, we develop a novel algorithm for shading correction directly on CBCT images. Distinct from other image-domain correction methods, our approach does not rely on prior patient information or prior assumption of patient data. In CBCT, projection errors (mostly from scatter and non-ideal usage of bowtie filter) result in dominant low-frequency shading artifacts in image domain. In circular scan geometry, these artifacts often show global or local radial patterns. Hence, the raw CBCT images are first preprocessed into the polar coordinate system. Median filtering and polynomial fitting are applied on the transformed image to estimate the low-frequency shading artifacts (referred to as the bias field) angle-by-angle and slice-by-slice. The low-pass filtering process is done firstly along the angular direction and then the radial direction to preserve image contrast. The estimated bias field is then converted back to the Cartesian coordinate system, followed by 3D low-pass filtering to eliminate possible high-frequency components. The shading-corrected image is finally obtained as the uncorrected volume divided by the bias field. The proposed algorithm was evaluated on CBCT images of a pelvis patient and a head patient. Mean CT number values and spatial non-uniformity on the reconstructed images were used as image quality metrics. Within selected regions of interest, the average CT number error was reduced from around 300 HU to 42 and 38 HU, and the spatial nonuniformity error was reduced from above 17.5% to 2.1% and 1.7% for the pelvis and the head patients, respectively. As our method suppresses only low-frequency shading artifacts, patient anatomy and contrast were retained in the corrected images for both cases. Our shading correction algorithm on CBCT images offers several advantages. It has a high efficiency, since it is deterministic and directly operates on the reconstructed images. It requires no prior information or assumptions, which not only achieves the merits of CBCT-based treatment monitoring by retaining the patient anatomy, but also facilitates its clinical use as an efficient image-correction solution.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Artifacts , Cone-Beam Computed Tomography/statistics & numerical data , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Imaging, Three-Dimensional , Pelvic Neoplasms/diagnostic imaging , Pelvic Neoplasms/radiotherapy , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/statistics & numerical data
16.
Phys Med Biol ; 60(23): 9157-83, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26562284

ABSTRACT

Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm 'the common mask guided image reconstruction' (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and 'well' solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes.Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64 ± 6.5%, 3.63 ± 0.83%, 1.31% ± 0.09%, 0.86% ± 0.11% and 0.52 % ± 0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms.The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Four-Dimensional Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Models, Theoretical , Phantoms, Imaging , Humans , Motion , Retrospective Studies
17.
Phys Med Biol ; 60(21): 8505-24, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26485492

ABSTRACT

Recently, the compressed sensing (CS) based iterative reconstruction method has received attention because of its ability to reconstruct cone beam computed tomography (CBCT) images with good quality using sparsely sampled or noisy projections, thus enabling dose reduction. However, some challenges remain. In particular, there is always a tradeoff between image resolution and noise/streak artifact reduction based on the amount of regularization weighting that is applied uniformly across the CBCT volume. The purpose of this study is to develop a novel low-dose CBCT reconstruction algorithm framework called priori mask guided image reconstruction (p-MGIR) that allows reconstruction of high-quality low-dose CBCT images while preserving the image resolution. In p-MGIR, the unknown CBCT volume was mathematically modeled as a combination of two regions: (1) where anatomical structures are complex, and (2) where intensities are relatively uniform. The priori mask, which is the key concept of the p-MGIR algorithm, was defined as the matrix that distinguishes between the two separate CBCT regions where the resolution needs to be preserved and where streak or noise needs to be suppressed. We then alternately updated each part of image by solving two sub-minimization problems iteratively, where one minimization was focused on preserving the edge information of the first part while the other concentrated on the removal of noise/artifacts from the latter part. To evaluate the performance of the p-MGIR algorithm, a numerical head-and-neck phantom, a Catphan 600 physical phantom, and a clinical head-and-neck cancer case were used for analysis. The results were compared with the standard Feldkamp-Davis-Kress as well as conventional CS-based algorithms. Examination of the p-MGIR algorithm showed that high-quality low-dose CBCT images can be reconstructed without compromising the image resolution. For both phantom and the patient cases, the p-MGIR is able to achieve a clinically-reasonable image with 60 projections. Therefore, a clinically-viable, high-resolution head-and-neck CBCT image can be obtained while cutting the dose by 83%. Moreover, the image quality obtained using p-MGIR is better than the quality obtained using other algorithms. In this work, we propose a novel low-dose CBCT reconstruction algorithm called p-MGIR. It can be potentially used as a CBCT reconstruction algorithm with low dose scan requests.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Radiation Dosage , Algorithms , Humans
18.
Phys Med Biol ; 60(16): 6213-26, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26226323

ABSTRACT

The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to 99.3% with 3%/3 mm and from 79.2% to 95.2% with 2%/2 mm when compared with the CC13 beam model. These results show the effectiveness of the proposed method. Less inter-user variability can be expected of the final beam model. It is also found that the method can be easily integrated into model-based TPS.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms
19.
Med Phys ; 42(4): 1836-50, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25832074

ABSTRACT

PURPOSE: The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. METHODS: The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. RESULTS: Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc therapy fields (∼90 control points) with a 3D grid size of 2.0 × 2.0 × 2.0 mm(3), dose was computed within 3-5 and 10-15 s timeframe, respectively. CONCLUSIONS: The authors have developed an efficient adaptive beamlet-based pencil beam dose calculation algorithm. The fast computation nature along with GPU compatibility has shown better performance than conventional FSPB. This enables the implementation of AB-FSPB in the clinical environment for independent volumetric dose verification.


Subject(s)
Algorithms , Radiotherapy, Intensity-Modulated/methods , Computer Graphics/instrumentation , Humans , Models, Theoretical , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Time Factors
20.
Med Phys ; 42(1): 244-53, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25563264

ABSTRACT

PURPOSE: Accurately localizing lung tumor localization is essential for high-precision radiation therapy techniques such as stereotactic body radiation therapy (SBRT). Since direct monitoring of tumor motion is not always achievable due to the limitation of imaging modalities for treatment guidance, placement of fiducial markers on the patient's body surface to act as a surrogate for tumor position prediction is a practical alternative for tracking lung tumor motion during SBRT treatments. In this work, the authors propose an innovative and robust model to solve the multimarker position optimization problem. The model is able to overcome the major drawbacks of the sparse optimization approach (SOA) model. METHODS: The principle-component-analysis (PCA) method was employed as the framework to build the authors' statistical prediction model. The method can be divided into two stages. The first stage is to build the surrogate tumor matrix and calculate its eigenvalues and associated eigenvectors. The second stage is to determine the "best represented" columns of the eigenvector matrix obtained from stage one and subsequently acquire the optimal marker positions as well as numbers. Using 4-dimensional CT (4 DCT) and breath hold CT imaging data, the PCA method was compared to the SOA method with respect to calculation time, average prediction accuracy, prediction stability, noise resistance, marker position consistency, and marker distribution. RESULTS: The PCA and SOA methods which were both tested were on all 11 patients for a total of 130 cases including 4 DCT and breath-hold CT scenarios. The maximum calculation time for the PCA method was less than 1 s with 64 752 surface points, whereas the average calculation time for the SOA method was over 12 min with 400 surface points. Overall, the tumor center position prediction errors were comparable between the two methods, and all were less than 1.5 mm. However, for the extreme scenarios (breath hold), the prediction errors for the PCA method were not only smaller, but were also more stable than for the SOA method. Results obtained by imposing a series of random noises to the surrogates indicated that the PCA method was much more noise resistant than the SOA method. The marker position consistency tests using various combinations of 4 DCT phases to construct the surrogates suggested that the marker position predictions of the PCA method were more consistent than those of the SOA method, in spite of surrogate construction. Marker distribution tests indicated that greater than 80% of the calculated marker positions fell into the high cross correlation and high motion magnitude regions for both of the algorithms. CONCLUSIONS: The PCA model is an accurate, efficient, robust, and practical model for solving the multimarker position optimization problem to predict lung tumor motion during SBRT treatments. Due to its generality, PCA model can also be applied to other imaging guidance system whichever using surface motion as the surrogates.


Subject(s)
Algorithms , Fiducial Markers , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Breath Holding , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Models, Biological , Motion , Principal Component Analysis , Retrospective Studies , Time Factors , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...